Quantum Computing

Quantum Theory

Quantum States

Early 20th Century physics

Quantum States

Particle on a line

\[\ket \psi = c_0\ket{x_0} + ... + c_{n-1}\ket{x_{n-1}}\] \[\ket \psi \rightarrow [c_0, ..., c_{n-1}]^T\] \[p(x_i) = \frac{|c_i|^2}{|\ket \psi|^2} = \frac{|c_i|^2}{\sum_j{|c_j|^2}}\] \[\frac{\ket \psi}{|\ket \psi|}\]

Spin

\[\ket \psi = c_0\ket \uparrow + c_1 \downarrow\] \[\braket{\psi'|\psi} = [\overline{c_0'}, ..., \overline{c_{n-1}'}] \begin{bmatrix} c_0 \\ \vdots \\ c_{n-1} \end{bmatrix}\]

Transition Amplitude Diagram

\[\ket \psi = \sum_{i=0}^{n-1}{b_i\ket{b_i}}\]

Summary

Observables

Position

Momentum

\[M(\ket \psi) = -i \hbar \frac{\partial\ket\psi}{\partial x}\]

Spin

\[S_z = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix}, S_y = \frac{\hbar}{2} \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}, S_x = \frac{\hbar}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix}\]

Manipulating Observables

\[\braket{\Omega_1\cdot\Omega_2\phi, \psi} = \braket{\Omega_2\phi, \Omega_1\psi} = \braket{\phi, \Omega_2\cdot\Omega_1\psi}\] \[\braket{\Omega_1\cdot\Omega_2\phi, \psi} = \braket{\phi, \Omega_1\cdot\Omega_2\psi}\] \[[\Omega_1, \Omega_2] = \Omega_1\cdot\Omega_2 - \Omega_2\cdot\Omega_1\] \[\Omega' = \alpha_0 + \alpha_1\Omega+\alpha_2\Omega^2 + ... +\alpha_{n-1}\Omega^{n-1}\]

Expected Value

Variance

\[\Delta_\psi(\Omega) = \Omega - \braket{\Omega}_\psi I\]

Heisenberg’s Uncertainty Principle

\[Var_\psi(\Omega_1)\cdot Var_\psi(\Omega_2)\ge \frac{1}{4}|\braket{[\Omega_1, \Omega_2]}_\psi^2\]

Summary

Measurement

Meaning of expected value

\[\braket{\Omega}_\psi = \braket{\Omega\psi,\psi}=\sum{|c_i|^2\lambda_i}\]

Order Matters

Summary

Dynamics

Unitary Transformations

\[\ket{\psi(t+1)} = U\ket{\psi(t)}\]

System evolution

\[\frac{\partial\ket{\psi(t)}}{\partial t} = -i\frac{2\pi}{\hbar}\mathcal{H}\ket{\psi(t)}\]

Summary

Assembling Quantum Systems

Assembly

\[\mathbb{V_0}\otimes ...\otimes\mathbb{V_k}\] \[\ket\psi = \sum_{i,j} c_{ij}\ket{x_i}\otimes\ket{y_j}\]

Entanglement

\[\ket\psi = \ket{x_0}\otimes\ket{y_0} + \ket{x_1}\otimes\ket{y_1} \\ = 1\ket{x_0}\otimes\ket{y_0} 0\ket{x_0}\otimes\ket{y_1} + 0\ket{x_1}\otimes\ket{y_0} + \ket{x_1}\otimes\ket{y_1} \\\] \[(c_0\ket{y_0}+c_1\ket{y_1})\otimes(d_0\ket{y_0}+d_1\ket{y_1}) = c_0d_0\ket{x_0}\otimes\ket{y_0} c_0d_1\ket{x_0}\otimes\ket{y_1} + c_1d_0\ket{x_1}\otimes\ket{y_0} + c_1d_1\ket{x_1}\otimes\ket{y_1}\]

Spin

\[\{\uparrow_L\otimes\uparrow_R, \uparrow_L\otimes\downarrow_R, \downarrow_L\otimes\uparrow_R, \downarrow_L\otimes\downarrow_R\}\] \[\frac{\ket{\uparrow_L\otimes\downarrow_R}+\ket{\downarrow_L\otimes\uparrow_R}}{\sqrt{2}}\]

Summary


Edit this page.