Quantum States

Early 20th Century physics

- classical mechanics viewed matter as composed of particles, and light as composed of continuous electromagnetic waves
- diffraction experiment: beam of subatomic particles hitting a crystal diffract in a wave-like pattern
- de Broglie wavelength associated with matter
- photoelectric effect: an atom hit by a beam of light may absorb it, causing electrons transition to a higher energy orbital
- absorbed energy may be emitted as light causing electrons to transition back to the original orbital
- light-matter transactions always occur via discrete packets of energy, i.e. photons
- further experimental evidence: old duality particle-wave theory needed to be replaced by a theory in which both matter and light can exhibit both particle- and wave-like behaviour.
- Young's double slit experiment: shine light at a boundary with 2 very close slits, between the light source and an observing wall
- pattern of light on the wall varies between light and dark as a result of interference between light
- with one slit closed, no interference pattern is observed
- remarkable results:
* double-slit experiment can be performed with a single photon: if there is a single photon, why would there be any interference pattern?
* can also be performed with electrons, protons, atomic nuclei, bucky balls, all of which exhibit interference behaviour
- conclusion: rigid distinction between waves and particles as a means of describing the physical world is untenable at the quantum level

Quantum States

Particle on a line

- consider a subatomic particle on a line that may only be found at one of several equally spaced points $\left\{x_{0}, \ldots, x_{n-1}\right\}$ separated by distance δx
- describe the current state of the particle as a complex vector $\left[c_{0}, \ldots, c_{n-1}\right]^{T}$
- denote the particle being at point i as $\left|x_{i}\right\rangle$ (a ket)
- each basic state has an associated column vector $\left|x_{i}\right\rangle \rightarrow \delta_{i j} \in \mathbb{C}^{n}$
- note these vectors form the canonical basis of \mathbb{C}^{n}
- in quantum physics, the particle can be in a fuzzy blending of states: all vectors in \mathbb{C}^{n} represent a legitimate physical state
- superposition: an arbitrary state $|\psi\rangle$ is then a linear combination of the basic states $\left|x_{i}\right\rangle, \ldots,\left|x_{n-1}\right\rangle$ with complex amplitudes c_{0}, \ldots, c_{n-1}
- represents particle being simultaneously in all locations, a blending of all $\left|x_{i}\right\rangle$

$$
|\psi\rangle=c_{0}\left|x_{0}\right\rangle+\ldots+c_{n-1}\left|x_{n-1}\right\rangle
$$

- every state can therefore be represented as an element of \mathbb{C}^{n} as

$$
|\psi\rangle \rightarrow\left[c_{0}, \ldots, c_{n-1}\right]^{T}
$$

- probability that, after observing the particle, we will detect it at point x_{i} :

$$
p\left(x_{i}\right)=\frac{\left|c_{i}\right|^{2}}{| | \psi\rangle\left.\right|^{2}}=\frac{\left|c_{i}\right|^{2}}{\sum_{j}\left|c_{j}\right|^{2}}
$$

- clearly $p\left(x_{i}\right) \in \mathbb{R}$ and $0 \leq p\left(x_{i}\right) \leq 1$
- when $|\psi\rangle$ is observed, it will be found in one of the basic states
- kets can be added: $|\psi\rangle+|\psi\rangle^{\prime}=\left[c_{0}+c_{0}^{\prime}, \ldots, c_{n-1}+c_{n-1}^{\prime}\right]^{T}$
- a ket $|\psi\rangle$ and its scalar multiples $c|\psi\rangle$ (for some $c \in \mathbb{C}$) describe the same physical state
- the length of $|\psi\rangle$ doesn't matter as far as physics goes
- it then makes sense to work with a normalised ket with length 1 :

$$
\frac{|\psi\rangle}{||\psi\rangle|}
$$

- for a normalised ket, we have $p\left(x_{i}\right)=\left|c_{i}\right|^{2}$

Spin

- property of subatomic particles which is the prototypical way to implement qubits
- Stern-Gerlach experiment: electron in presence of magnetic field observed to behave as if it were a charged spinning top, by acting as a magnet and trying to align itself with the magnetic field
- experiment: shoot beam of electrons through a magnetic field oriented in a certain direction
- beam is split into 2 streams with opposite spin
- differences to classical spinning top:
- electron doesn't have internal structure: quantum property with no classical analog
- all electrons can be found in 1 of 2 locations, not distributed between (spin can be clockwise/anticlockwise)
- for each direction in space, there are only 2 spin states, spin up $|\uparrow\rangle$ and down $|\downarrow\rangle$
- arbitrary state is then a superposition of up and down:

$$
|\psi\rangle=c_{0}|\uparrow\rangle+c_{1} \downarrow
$$

- inner product: modifies vector space into a space with geometry, adding angles, orthogonality, distance
- inner product of state space allows computation of transition amplitudes, which you can use to determine the likelihood the state of the system before a specific measurement will change to another state after measurement has occurred
- consider two normalised states $|\psi\rangle,\left|\psi^{\prime}\right\rangle$
- let the start state be $|\psi\rangle$, and the end state a row vector with complex conjugate coordinates of $\left|\psi^{\prime}\right\rangle$
- define the bra_ $\left\langle\psi^{\prime}\right|=|\psi\rangle^{\dagger}=\left[\overline{c_{0}^{\prime}}, \ldots, \overline{c_{n-1}^{\prime}}\right]$
- the transition amplitude is then the inner product bra-ket

$$
\left\langle\psi^{\prime} \mid \psi\right\rangle=\left[\overline{c_{0}^{\prime}}, \ldots, \overline{c_{n-1}^{\prime}}\right]\left[\begin{array}{c}
c_{0} \\
\vdots \\
c_{n-1}
\end{array}\right]
$$

- represent the start state, end state, and amplitude of going between these states as:

Figure 1: Transition Amplitude Diagram

- bra-ket approach shifts focus from states to state transitions
- the transition amplitude between two states is zero when two states are orthogonal: orthogonal states are mutually exclusive alternatives
- e.g. an electron can be in arbitrary superposition of spin up and down, but after measurement in the z-direction, it will always be either up or down, not both up and down
- if the electron was already in the up state before the z-direction measurement, it will never transition to a down state as a result of that measurement
- every complete measurement of a quantum system has an associated orthonormal basis of all possible outcomes
- with $|\psi\rangle$ in the basis $\left\{\left|b_{0}\right\rangle, \ldots,\left|b_{n-1}\right\rangle\right\}$, i.e.

$$
|\psi\rangle=\sum_{i=0}^{n-1} b_{i}\left|b_{i}\right\rangle
$$

- each $\left|b_{i}\right|^{2}$ is the probability of ending up in state $\left|b_{i}\right\rangle$ after a measurement has been made

Summary

- we can associate a vector space with a quantum system, with its dimension reflecting the number of basic states of the system
- states can be superposed by adding their representing vectors
- a state is left unchanged if its representing vector is multiplied by a complex scalar
- the state space has a geometry given by its inner product: this has a physical meaning, namely the likelihood of a given state to transition to another one after measurement
- orthogonal states are mutually exclusive

Observables

- physical quantities only make sense with respect to a quantifiable observation
- a physical system can be specified by a pair: (state space, observables)
- state space: set of all states the system may occupy
- observables: set of physical quantities able to be observed in each state of the state space
- each observable can be considered a question we can pose to the system: if the system is in a particular state $|\psi\rangle$ what values can we observe?
- Postulate: each physical observable has a corresponding hermitian operator
- reminder: Hermitian means $A^{\dagger}=A$
- an observable is a linear operator: it maps states to states
- the application of an observable Ω to a state vector $|\psi\rangle$ is the resulting state $\Omega|\psi\rangle$
- in general $\Omega|\psi\rangle$ is not a scalar multiple of $|\psi\rangle$; they do not represent the same state, i.e. Ω has modified the state of the system
- Postulate: let Ω be a hermitian operator associated with a physical observable. Then the eigenvalues of Ω are the only possible values the observable can take as a result of measuring it on any given state. The eigenvectors of Ω form a basis for the state space.
- so observables can be considered legitimate questions we can pose to quantum systems. The question may be answered with the eigenvalues of the observable

Position

- specific question: "where can the particle be found?"
- what's the corresponding hermitian operator, P, for position?
- how does it operate on basic states e.g. $\left|x_{i}\right\rangle$? $P(|\psi\rangle)=P\left(\left|x_{i}\right\rangle\right)=x_{i}|\psi\rangle$: P acts as multiplication by position
- the basic states form a basis, so for an arbitrary stat: $P\left(\sum c_{i}\left|x_{i}\right\rangle\right)=\sum x_{i} c_{i}\left|x_{i}\right\rangle$
- as a matrix: this is the diagonal matrix whose entries are the x_{i} coordinates
- note:
- P is trivially hermitian
- all diagonal elements are real
- eigenvalues are x_{i} values
- normalised eigenvectors are the basic state vectors

Momentum

- specific question: "what is the particle's momentum?"
- represented by operator M, proportional to the rate of change of the state vector across space

$$
M(|\psi\rangle)=-i \hbar \frac{\partial|\psi\rangle}{\partial x}
$$

Spin

- specific question: "for a given direction in space, in which direction is the particle spinning?"
- e.g. up/down in z direction? left/right in x direction? in/out in y direction?
- spin operators:

$$
S_{z}=\frac{\hbar}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], S_{y}=\frac{\hbar}{2}\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], S_{x}=\frac{\hbar}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

- each spin operator has a corresponding orthonormal basis:
- $S_{z}:\{|\uparrow\rangle,|\downarrow\rangle\}$, up and down
- $S_{y}:\{|\leftarrow\rangle,|\rightarrow\rangle\}$, left and right
- $S_{x}:\{|\swarrow\rangle,|\nearrow\rangle\}$, in and out

Manipulating Observables

- in physics we frequently add, multiply quantities to produce other meaningful quantities: momentum as mass*velocity, ..
- to what extent can quantum observables be manipulated to obtain other observables?
- \checkmark multiplication by a real scalar, $c \in \mathbb{R}, c \Omega$
- Multiplying a hermitian matrix by a real scalar produces a hermitian matrix
- \times multiplication by a complex scalar: the result may not be hermitian
- \checkmark addition of two hermitian matrices $\Omega_{1}+\Omega_{2}$
- set of hermitian matrices of fixed dimension forms a \mathbb{R} vector space (but not a \mathbb{C} one)
- products? e.g. $\Omega_{1} \cdot \Omega_{2}$. Issues:
- the order in which operators are applied to state vectors matters in general, as matrix multiplication is not generally commutative
- the product of 2 hermitian operators is not guaranteed to be hermitian
- what does it take for the product of 2 hermitian operators to be hermitian?
- recall $\langle H \cdot V, W\rangle=\langle V, H \cdot W\rangle$ for hermitian H. Accordingly for hermitian Ω_{1}, Ω_{2} :

$$
\left\langle\Omega_{1} \cdot \Omega_{2} \phi, \psi\right\rangle=\left\langle\Omega_{2} \phi, \Omega_{1} \psi\right\rangle=\left\langle\phi, \Omega_{2} \cdot \Omega_{1} \psi\right\rangle
$$

- for $\Omega_{1} \cdot \Omega_{2}$ to be hermitian, we need:

$$
\left\langle\Omega_{1} \cdot \Omega_{2} \phi, \psi\right\rangle=\left\langle\phi, \Omega_{1} \cdot \Omega_{2} \psi\right\rangle
$$

- which implies we need $\Omega_{1} \cdot \Omega_{2}=\Omega_{2} \cdot \Omega_{1}$
- we define the commutator operator as:

$$
\left[\Omega_{1}, \Omega_{2}\right]=\Omega_{1} \cdot \Omega_{2}-\Omega_{2} \cdot \Omega_{1}
$$

- if $\left[\Omega_{1}, \Omega_{2}\right]=0$, then the product $\Omega_{1} \cdot \Omega_{2}=\Omega_{2} \cdot \Omega_{1}$ is hermitian
- e.g. $\left[S_{x}, S_{y}\right]=2 i S_{z}$, i.e. the spin operators do not commute
- note that the product of a hermitian operator with itself always commutes, as does the exponent operation. Therefore for a single hermitian Ω, we get the entire algebra of polynomials over Ω, i.e. all operators of the following form commute with one another:

$$
\Omega^{\prime}=\alpha_{0}+\alpha_{1} \Omega+\alpha_{2} \Omega^{2}+\ldots+\alpha_{n-1} \Omega^{n-1}
$$

- consequently if the commutator of 2 hermitian operators is 0 (i.e. the operators commute), you are able to to assign their product as the mathematical equivalent of the physical product of their associated observables
- if the commutator is non-zero, we get Heisenberg's uncertainty principle

Expected Value

- hermitian operators are those which behave well with respect to the inner product: $\langle\Omega \phi, \psi\rangle=$ $\langle\phi, \Omega \psi\rangle$ for each pair $|\psi\rangle,|\psi\rangle$
- this means $\langle\Omega \psi, \psi\rangle \in \mathbb{R}$ for each ψ, denoted $\langle\Omega\rangle_{\psi}$
- subscript denotes dependence on state vector
- Postulate: $\langle\Omega\rangle_{\psi}$ is the expected value of observing Ω repeatedly on the same state ψ
- let $\lambda_{1}, \ldots, \lambda_{n-1}$ be the eigenvalues of Ω
- prepare the system so that it is in state $|\psi\rangle$ and let us observe the value of Ω : this will yield one of the λ_{i}
- repeat this n times, such that each λ_{i} has been seen p_{i} times
- now compute the estimated expected value of Ω as $\frac{1}{n} \sum \lambda_{i} p_{i_{i}}$
- if n is sufficiently large, this will be very close to $\langle\Omega \psi, \psi\rangle$

Variance

- the variance will indicate the spread of distribution around expected value
- introduce the hermitian operator

$$
\Delta_{\psi}(\Omega)=\Omega-\langle\Omega\rangle_{\psi} I
$$

- this operates on a generic vector $|\phi\rangle$ as:

$$
\Delta_{\psi}(\Omega)|\phi\rangle=\Omega(|\phi\rangle)-\left(\langle\Omega\rangle_{\psi}\right)|\phi\rangle
$$

- i.e. $\Delta_{\psi}(\Omega)$ substracts the mean from the result of Ω
- variance of Ω at $|\psi\rangle$ is then the expectation value of $\Delta_{\psi}(\Omega)$ squared:

$$
\operatorname{Var}_{\psi}(\Omega)=\left\langle\left(\Delta_{\psi}(\Omega)\right) \cdot\left(\Delta_{\psi}(\Omega)\right)\right\rangle_{\psi}
$$

- note this is not too far from $\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)$
- the variance of the same hermitian varies from state to state: on an eigenvector of the operator, the variance is 0 , and the expected value is the corresponding eigenvalue: the observable is sharp on its eigenvectors; there is no ambiguity of outcome

Heisenberg's Uncertainty Principle

- consider observables represented by hermitians Ω_{1}, Ω_{2} and a given state $|\psi\rangle$
- compute $\operatorname{Var}_{\psi}\left(\Omega_{1}\right), \operatorname{Var}_{\psi}\left(\Omega_{2}\right)$. Do they relate, and if so, how?
- i.e. given 2 observables we would hope to simultaneously minimise each variance such that the outcome was sharp for both
- if the variances were not correlated, you would expect a sharp measure of each observable on a convenient state
- however the variances are correlated
- Theorem: Heisenberg's uncertainty principle the product of the variances of 2 arbitrary hermitian operators on a given state is always greater than or equal to one quarter of the square of the expected value of their commutator:

$$
\left.\operatorname{Var}_{\psi}\left(\Omega_{1}\right) \cdot \operatorname{Var}_{\psi}\left(\Omega_{2}\right) \geq \frac{1}{4} \right\rvert\,\left\langle\left[\Omega_{1}, \Omega_{2}\right]\right\rangle_{\psi}^{2}
$$

- so the commutator measures how good a simultaneous measure of 2 observables can possibly be
- if the commutator happens to be 0 , there is no fundamental limit to the accuracy
- however there are plenty of operators that do not commute e.g. directional spin operators
- position-momentum also do not commute. The expression of $|\psi\rangle$ with respect to the eigenbasis of each observable paints markedly different stories
- $|\psi\rangle$ can be expressed in the momentum eigenbasis, which treats $|\psi\rangle$ like a wave, decomposing it into sinusoids
- $|\psi\rangle$ expressed in the position eigenbasis is made of Dirac deltas, peaks zero everywhere except at a point, i.e. decomposed into a weighted sum of peaks

Summary

- observables are represented by hermitian matrices
- the result of an observation is always an eigenvalue of the hermitian
- $\langle\psi| \Omega|\psi\rangle$ represents the expected value of observing Ω on $|\psi\rangle$
- observables do not commute (in general): this means the order of observation matters, and that there is a fundamental limit on our ability to simultaneously measure their values

Measurement

- measurement: act of carrying out an observation on a physical system
- observable corresponds to specific question posed
- measuring is the process of asking a specific question and receiving a definite answer
- classical physics made the false implicit assumptions that
- the act of measuring does not change the state of the system
- the result of a measurement on a well-defined state is predictable: if a state is known with certainty, the value of the observable on that state can be anticipated
- these assumptions are wrong:
- systems are perturbed as a result of measurement
- only the probability of observing specific values can be calculated: measurement is inherently nondeterministic
- so far we know that as the result of an observation, an observable can only assume one of its eigenvalues
- how frequently will we see a given eigenvalue λ ? What happens to the state vector if λ is observed?
- Postulate: let Ω be an observable, and $|\psi\rangle$ be a state. If the result of measuring Ω is the eigenvalue λ, the state after measurement will always be the eigenvector $|e\rangle$ corresponding to λ.
- we say that the system has collapsed from $|\psi\rangle$ to $|e\rangle$
- what is the probability that a (normalised) start state $|\psi\rangle$ will transition to a specific eigenvector $|e\rangle$?
- this is given by the square of the inner product of the states, $\langle e \mid \psi\rangle^{2}$
- this has the geometrical meaning of the projection of $|\psi\rangle$ along $|e\rangle$

Meaning of expected value

- remember the normalised eigenvectors of Ω form an orthogonal basis of the state space, so we can express $|\psi\rangle$ as a linear combination w.r.t. this basis: $|\psi\rangle=\sum c_{i}\left|e_{i}\right\rangle$
- compute the mean

$$
\langle\Omega\rangle_{\psi}=\langle\Omega \psi, \psi\rangle=\sum\left|c_{i}\right|^{2} \lambda_{i}
$$

- this is exactly the mean value of the probability distribution $\left(\lambda_{0}, p_{0}\right), \ldots,\left(\lambda_{n-1}, p_{n-1}\right)$
- p_{i} : square amplitude of collapse into the corresponding eigenvector
- after measuring an observable, the system transitions to the corresponding eigenvector. If you ask the same question again, you will get the same answer
- what if you change the question?

Order Matters

- consider making successive measurements for different observables
- each observable has a different set of eigenvectors to which the system will collapse
- the answer will depend on the order in which questions are posed
- e.g. polarising sheet and a beam of light
- light can be polarised, where the wave only vibrates along a specific plane orthogonal to propogation (as opposed to all possible planes)
- polarising sheet placed within the beam of light
* measures polarisation of light in orthogonal basis corresponding to direction of the sheet
* filters out photons that collapsed to one of the elements of the basis
- adding a 2nd sheet
* oriented in same direction: no difference whatsoever. Asking the same question repeatedly
* rotated by 90° : no light passes through. The light that was not filtered by the first sheet is now guaranteed to be filtered by the second.
- adding a 3rd sheet before/after 1st/2nd
* no effect. No light permitted before, and none allowed through the additional sheet
- placing a 3 rd sheet in the middle, at 45° :
* light passes through all three sheets:
- left sheet: measures all light relative to up-down basis
- light in vertical polarisation state that goes through is then in a superposition with respect to the basis of the diagonal sheet
- the middle sheet then collapses half, filters some, and passes some through
- the light passed through is again in a superposition with respect to the 3rd sheet, so some light again passes through
- note: with 50% filtering by each sheet, only $1 / 8$ of the original light passes through

Summary

- the end state of a measurement of an observable is always one of its eigenvectors
- the probability for an initial state to collapse into an eigenvector of the observable is given by the length squared of the projection
- when measuring several observables sequentially, the order of measurement matters

Dynamics

- so far we have considered static quantum systems, so we need quantum dynamics to examine how quantum systems evolve over time

Unitary Transformations

- Postulate: the evolution of a quantum system (that is not a measurement) is given by a unitary operator or transformation
- if U is a unitary matrix representing a unary operator, and $|\psi(t)\rangle$ represents a state of the system at time t, then:

$$
|\psi(t+1)\rangle=U|\psi(t)\rangle
$$

- properties of unitary transformations
- closed under composition: the product of 2 arbitrary unitary matrices is unitary
- closed under inverse: the inverse of a unitary matrix is unitary
- multiplicative identity: the identity operator is trivially unitary
- the set of transformations constitutes a group of transformations with respect to composition

System evolution

- assume we have a rule \mathfrak{U} that associates with each instant of time t_{i} a unitary matrix $\mathfrak{U}\left[t_{i}\right]$
- initial state vector $|\psi\rangle$
- you can then apply each $\mathfrak{U}\left[t_{i}\right]$ to form a sequence of state vectors

$$
\mathfrak{U}\left[t_{0}\right]|\psi\rangle, \ldots, \mathfrak{U}\left[t_{n-1}\right] \ldots \mathfrak{U}\left[t_{0}\right]|\psi\rangle
$$

- this sequence is called an orbit of $|\psi\rangle$ under the action of $\mathfrak{U}\left[t_{i}\right]$ at time click t_{i}
- evolution is time symmetric: you can apply $\mathfrak{U}^{\dagger}\left[t_{i}\right]$ to undo the action of a given timestep
- quantum computation will work by
- placing the computer in an initial state,
- applying a sequence of unitary operators to the state
- measuring the output and producing a final state
- the sequence of unitary matrices, i.e. the system dynamics, are determined via the Schrodinger equation
- classical physics gave conservation of energy
- Hamiltonian: \mathcal{H} the observable for energy, with a hermitian matrix representing it
- solution with initial conditions allows determination of system evolution

$$
\frac{\partial|\psi(t)\rangle}{\partial t}=-i \frac{2 \pi}{\hbar} \mathcal{H}|\psi(t)\rangle
$$

Summary

- quantum dynamics is given by unitary transformations
- unitary transformations are invertible: all closed system dynamics are time reversible, provided that no measurements are involved
- concrete dynamics is given by the Schrodinger equation, which determines the evolution of a quantum system whenever its hamiltonian is specified

Assembling Quantum Systems

Assembly

- consider a system with 2 particles confined to the grid,
- positions of particle 1 can be $\left\{x_{0}, \ldots, x_{n-1}\right\}$
- positions of particle 2 can be $\left\{y_{0}, \ldots, y_{m-1}\right\}$
- assembling quantum systems means tensoring the state space of their constituents
- Postulate: assume we have 2 independent quantum systems Q, Q^{\prime} represented by respective vector spaces $\mathbb{V}, \mathbb{V}^{\prime}$.
The quantum system obtained by merging Q and Q^{\prime} will have the tensor product $\mathbb{V} \otimes \mathbb{V}^{\prime}$ as a state space
- using this postulate, we can assemble as many systems as we want: the tensor product is associative, so we can build progressively larger systems

$$
\mathbb{V}_{0} \otimes \ldots \otimes \mathbb{V}_{\mathfrak{k}}
$$

- by considering the electromagnetic field as a system composed of infinitely many particles, you can use this procedure to make field theory amenable to the quantum approach
- considering the confined particle example, there are $n m$ basic states: $\left|x_{i}\right\rangle \otimes\left|y_{j}\right\rangle$ means particle 1 is at x_{i}, particle 2 is at y_{j}
- you can then express the generic state vector as a superposition of the basic states:

$$
|\psi\rangle=\sum_{i, j} c_{i j}\left|x_{i}\right\rangle \otimes\left|y_{j}\right\rangle
$$

- this is a vector in the $n m$ dimensional complex space $\mathbb{C}^{m n}$
- $\left|c_{i j}\right|^{2}$ gives the probability of finding the two particles at x_{i}, y_{j} respectively

Entanglement

- the basic states of the assembled system are the tensor product of basic states of its constituents
- it would be nice if we could rewrite an arbitrary state vector as the tensor product of two states from respective subsystems
- this cannot be done (in general). Consider the following 2 particle system in state $|\psi\rangle$

$$
|\psi\rangle=\left|x_{0}\right\rangle \otimes\left|y_{0}\right\rangle+\left|x_{1}\right\rangle \otimes\left|y_{1}\right\rangle=1\left|x_{0}\right\rangle \otimes\left|y_{0}\right\rangle 0\left|x_{0}\right\rangle \otimes\left|y_{1}\right\rangle+0\left|x_{1}\right\rangle \otimes\left|y_{0}\right\rangle+\left|x_{1}\right\rangle \otimes\left|y_{1}\right\rangle
$$

- attempt to write $|\psi\rangle$ as the tensor product of 2 states from respective subsystems

$$
\left(c_{0}\left|y_{0}\right\rangle+c_{1}\left|y_{1}\right\rangle\right) \otimes\left(d_{0}\left|y_{0}\right\rangle+d_{1}\left|y_{1}\right\rangle\right)=c_{0} d_{0}\left|x_{0}\right\rangle \otimes\left|y_{0}\right\rangle c_{0} d_{1}\left|x_{0}\right\rangle \otimes\left|y_{1}\right\rangle+c_{1} d_{0}\left|x_{1}\right\rangle \otimes\left|y_{0}\right\rangle+c_{1} d_{1}\left|x_{1}\right\rangle \otimes\left|y_{1}\right\rangle
$$

- This would imply $c_{0} d_{0}=c_{1} d_{1}=1$ and $c_{0} d_{1}=c_{1} d_{0}=0$, which has no solutions. Therefore $|\psi\rangle$ cannot be written as a tensor product
- what does this mean? If you measure the first particle, you have a 50% chance of finding it at position x_{0}. If it is found at x_{0}, then, as $\left|x_{0}\right\rangle \otimes\left|y_{1}\right\rangle$ has coefficient 0 , there is no chance of finding particle 2 at position y_{1} : i.e. particle 2 must be at position y_{0} !
- we say that the individual states of the particles are entangled
- this holds even if x_{i} is light years away from y_{i} : regardless of spatial distance, a measurement's outcome for one particle will always determine the measurement's outcome for the other one
- other states are perfectly able to be decomposed into tensor products of subsystem states, and these are referred to as separable states

Spin

- there is a law of conservation of total spin of quantum system
- consider z direction, and the corresponding spin basis, up and down
- consider a composite particle whose total spin is 0 : the particle may split up at some point into 2 particles that have non-zero spin
- the spin states of those two particles will then be entangled: the sum of the spins must cancel each other out to conserve total spin
- if we measure the z-direction spin of the left particle in state up $\left(\left|\uparrow_{L}\right\rangle\right)$, the spin of the right particle must be $\left|\downarrow_{R}\right\rangle$
- the bases for the left and right particles are
- $\mathcal{B}_{L}=\left\{\uparrow_{L}, \downarrow_{L}\right\}$
- $\mathcal{B}_{R}=\left\{\uparrow_{R}, \downarrow_{R}\right\}$
- the basis for the entire system is:

$$
\left\{\uparrow_{L} \otimes \uparrow_{R}, \uparrow_{L} \otimes \downarrow_{R}, \downarrow_{L} \otimes \uparrow_{R}, \downarrow_{L} \otimes \downarrow_{R}\right\}
$$

- the entangled particles can then be described by:

$$
\frac{\left|\uparrow_{L} \otimes \downarrow_{R}\right\rangle+\left|\downarrow_{L} \otimes \uparrow_{R}\right\rangle}{\sqrt{2}}
$$

- when you measure the left particle and it collapses to the state $\left|\uparrow_{L}\right\rangle$, instantaneously, the right particle collapses to the state $\left|\downarrow_{R}\right\rangle$ even if it is millions of light years away

Summary

- the tensor product allows us to build complex quantum systems out of simpler ones
- the new system is not able to be analysed simply in terms of states of the subsystems: an entire set of new states has been created which cannot in general be resolved into their constituents - entanglement is used in quantum computing for:
- algorithm design
- cryptography
- teleportation
- decoherence

