Quantum States

Early 20th Century physics

- classical mechanics viewed matter as composed of particles, and light as composed of continuous electromagnetic waves
- **diffraction experiment:** beam of subatomic particles hitting a crystal diffract in a wave-like pattern
 - de Broglie wavelength associated with matter
- **photoelectric effect:** an atom hit by a beam of light may absorb it, causing electrons transition to a higher energy orbital
 - absorbed energy may be emitted as light causing electrons to transition back to the original orbital
 - light-matter transactions always occur via discrete packets of energy, i.e. photons
- further experimental evidence: old duality particle-wave theory needed to be replaced by a theory in which **both** matter and light can exhibit both particle- and wave-like behaviour.
- Young's double slit experiment: shine light at a boundary with 2 very close slits, between the light source and an observing wall
 - pattern of light on the wall varies between light and dark as a result of interference between light
 - with one slit closed, no interference pattern is observed
 - remarkable results:
 - * double-slit experiment can be performed with a single photon: if there is a single photon, why would there be any interference pattern?
 - * can also be performed with electrons, protons, atomic nuclei, bucky balls, all of which exhibit interference behaviour
- conclusion: rigid distinction between waves and particles as a means of describing the physical world is untenable at the quantum level

Quantum States

Particle on a line

- consider a subatomic particle on a line that may only be found at one of several equally spaced points $\{x_0, ..., x_{n-1}\}$ separated by distance δx

- describe the current state of the particle as a complex vector $[c_0, ..., c_{n-1}]^T$
- denote the particle being at point i as $|x_i\rangle$ (a ket
- each basic state has an associated column vector $|x_i\rangle \rightarrow \delta_{ij} \in \mathbb{C}^n$
- note these vectors form the canonical basis of \mathbb{C}^n
- in quantum physics, the particle can be in a fuzzy blending of states: all vectors in Cⁿ represent
 a legitimate physical state
- superposition: an arbitrary state $|\psi\rangle$ is then a linear combination of the basic states $|x_i\rangle$, ..., $|x_{n-1}\rangle$ with complex amplitudes c_0 , ..., c_{n-1}
 - represents particle being simultaneously in all locations, a blending of all $|x_i\rangle$

$$\psi\rangle=c_{0}\left|x_{0}\right\rangle+\ldots+c_{n-1}\left|x_{n-1}\right\rangle$$

- every state can therefore be represented as an element of \mathbb{C}^n as

$$|\psi\rangle \rightarrow [c_0,...,c_{n-1}]^T$$

• probability that, after observing the particle, we will detect it at point x_i:

$$p(x_i) = \frac{|c_i|^2}{|\,|\psi\rangle\,|^2} = \frac{|c_i|^2}{\sum_j |c_j|^2}$$

- clearly $p(x_i) \in \mathbb{R}$ and $0 \leq p(x_i) \leq 1$
- when $|\psi
 angle$ is observed, it will be found in one of the basic states
- kets can be added: $|\psi\rangle + |\psi\rangle' = [c_0 + c'_0, ..., c_{n-1} + c'_{n-1}]^T$
- a ket $|\psi\rangle$ and its scalar multiples $c |\psi\rangle$ (for some $c \in \mathbb{C}$) describe the same physical state
- the length of $|\psi
 angle$ doesn't matter as far as physics goes
- it then makes sense to work with a **normalised ket** with length 1:

$$\frac{|\psi\rangle}{|\psi\rangle|}$$

- for a normalised ket, we have $p(x_i) = |c_i|^2$

Spin

- · property of subatomic particles which is the prototypical way to implement qubits
- Stern-Gerlach experiment: electron in presence of magnetic field observed to behave as if it were a charged spinning top, by acting as a magnet and trying to align itself with the magnetic field

- experiment: shoot beam of electrons through a magnetic field oriented in a certain direction
- beam is split into 2 streams with opposite spin
- differences to classical spinning top:
 - electron doesn't have internal structure: quantum property with no classical analog
 - all electrons can be found in 1 of 2 locations, not distributed between (spin can be clockwise/anticlockwise)
- for each direction in space, there are only 2 spin states, spin **up** $|\uparrow\rangle$ and **down** $|\downarrow\rangle$
- arbitrary state is then a superposition of up and down:

$$\left|\psi\right\rangle = c_{0}\left|\uparrow\right\rangle + c_{1}\downarrow$$

- inner product: modifies vector space into a space with *geometry*, adding angles, orthogonality, distance
- inner product of state space allows computation of transition amplitudes, which you can use to determine the likelihood the state of the system before a specific measurement will change to another state after measurement has occurred
- consider two normalised states $|\psi
 angle$, $|\psi'
 angle$
- let the start state be $|\psi\rangle$, and the end state a row vector with complex conjugate coordinates of $|\psi'\rangle$

- define the **bra**_
$$\langle \psi'| = |\psi\rangle^{\dagger} = [\overline{c'_0},...,\overline{c'_{n-1}}]$$

• the transition amplitude is then the inner product **bra-ket**

$$\langle \psi' | \psi \rangle = [\overline{c'_0}, ..., \overline{c'_{n-1}}] \begin{bmatrix} c_0 \\ \vdots \\ c_{n-1} \end{bmatrix}$$

• represent the start state, end state, and amplitude of going between these states as:

Figure 1: Transition Amplitude Diagram

- bra-ket approach shifts focus from states to state transitions
- the transition amplitude between two states is zero when two states are orthogonal: orthogonal states are mutually exclusive alternatives

- e.g. an electron can be in arbitrary superposition of spin up and down, but after measurement in the z-direction, it will always be *either* up or down, not *both* up and down
 - if the electron was already in the up state before the z-direction measurement, it will never transition to a down state as a result of that measurement
- every complete measurement of a quantum system has an associated orthonormal basis of all possible outcomes
- with $|\psi\rangle$ in the basis $\{|b_0\rangle\,,...,|b_{n-1}\rangle\}$, i.e.

$$\left|\psi\right\rangle = \sum_{i=0}^{n-1} b_i \left|b_i\right\rangle$$

- each $|b_i|^2$ is the probability of ending up in state $|b_i
angle$ after a measurement has been made

Summary

- we can associate a vector space with a quantum system, with its dimension reflecting the number of basic states of the system
- states can be superposed by adding their representing vectors
- a state is left unchanged if its representing vector is multiplied by a complex scalar
- the state space has a geometry given by its inner product: this has a physical meaning, namely the likelihood of a given state to transition to another one after measurement
- orthogonal states are mutually exclusive

Observables

- physical quantities only make sense with respect to a quantifiable observation
- a physical system can be specified by a pair: (state space, observables)
 - state space: set of all states the system may occupy
 - observables: set of physical quantities able to be observed in each state of the state space
- each observable can be considered a question we can pose to the system: if the system is in a particular state $|\psi\rangle$ what values can we observe?
- Postulate: each physical observable has a corresponding hermitian operator
 - *reminder*: Hermitian means $A^{\dagger} = A$
 - an observable is a linear operator: it maps states to states
 - the application of an observable Ω to a state vector $|\psi\rangle$ is the resulting state $\Omega |\psi\rangle$

- in general $\Omega |\psi\rangle$ is not a scalar multiple of $|\psi\rangle$; they do not represent the same state, i.e. Ω has modified the state of the system
- **Postulate:** let Ω be a hermitian operator associated with a physical observable. Then the eigenvalues of Ω are the only possible values the observable can take as a result of measuring it on any given state. The eigenvectors of Ω form a basis for the state space.
- so observables can be considered legitimate questions we can pose to quantum systems. The question may be answered with the eigenvalues of the observable

Position

- specific question: "where can the particle be found?"
- what's the corresponding hermitian operator, P, for position?
 - how does it operate on basic states e.g. $|x_i\rangle$? $P(|\psi\rangle) = P(|x_i\rangle) = x_i |\psi\rangle$: *P* acts as multiplication by position
 - the basic states form a basis, so for an arbitrary stat: $P(\sum c_i |x_i\rangle) = \sum x_i c_i |x_i\rangle$
- as a matrix: this is the diagonal matrix whose entries are the x_i coordinates
- note:
 - *P* is trivially hermitian
 - all diagonal elements are real
 - eigenvalues are x_i values
 - normalised eigenvectors are the basic state vectors

Momentum

- specific question: "what is the particle's momentum?"
- represented by operator M, proportional to the rate of change of the state vector across space

$$M(|\psi\rangle) = -i\hbar \frac{\partial |\psi\rangle}{\partial x}$$

Spin

• specific question: "for a given direction in space, in which direction is the particle spinning?"

- e.g. up/down in z direction? left/right in x direction? in/out in y direction?

• spin operators:

$$S_z = \frac{\hbar}{2} \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}, S_y = \frac{\hbar}{2} \begin{bmatrix} 0 & -i\\ i & 0 \end{bmatrix}, S_x = \frac{\hbar}{2} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$$

- each spin operator has a corresponding orthonormal basis:
 - $S_z: \{ |\uparrow\rangle, |\downarrow\rangle \}$, up and down
 - $S_{y}:\{\left|\leftarrow\right\rangle,\left|\rightarrow\right\rangle\}$, left and right
 - $S_x: \{ |\swarrow \rangle, |\nearrow \rangle \}$, in and out

Manipulating Observables

- in physics we frequently add, multiply quantities to produce other meaningful quantities: momentum as mass*velocity, ...
- to what extent can quantum observables be manipulated to obtain other observables?
- \checkmark multiplication by a real scalar, $c\in\mathbb{R},c\Omega$
 - Multiplying a hermitian matrix by a real scalar produces a hermitian matrix
- \times multiplication by a complex scalar: the result may not be hermitian
- \checkmark addition of two hermitian matrices $\Omega_1+\Omega_2$
- set of hermitian matrices of fixed dimension forms a R vector space (but not a C one)
- products? e.g. $\Omega_1\cdot\Omega_2.$ Issues:
 - the order in which operators are applied to state vectors matters in general, as matrix multiplication is not generally commutative
 - the product of 2 hermitian operators is not guaranteed to be hermitian
- what does it take for the product of 2 hermitian operators to be hermitian?
 - recall $\langle H \cdot V, W \rangle = \langle V, H \cdot W \rangle$ for hermitian *H*. Accordingly for hermitian Ω_1, Ω_2 :

$$\langle \Omega_1 \cdot \Omega_2 \phi, \psi \rangle = \langle \Omega_2 \phi, \Omega_1 \psi \rangle = \langle \phi, \Omega_2 \cdot \Omega_1 \psi \rangle$$

- for $\Omega_1\cdot\Omega_2$ to be hermitian, we need:

$$\langle \Omega_1 \cdot \Omega_2 \phi, \psi \rangle = \langle \phi, \Omega_1 \cdot \Omega_2 \psi \rangle$$

- which implies we need $\Omega_1\cdot\Omega_2=\Omega_2\cdot\Omega_1$
- we define the commutator operator as:

$$[\Omega_1,\Omega_2]=\Omega_1\cdot\Omega_2-\Omega_2\cdot\Omega_1$$

- if $[\Omega_1,\Omega_2]=0,$ then the product $\Omega_1\cdot\Omega_2=\Omega_2\cdot\Omega_1$ is hermitian
- e.g. $[S_x, S_y] = 2iS_z$, i.e. the spin operators do not commute
- note that the product of a hermitian operator with itself always commutes, as does the exponent operation. Therefore for a single hermitian Ω, we get the entire algebra of polynomials over Ω, i.e. all operators of the following form commute with one another:

$$\Omega' = \alpha_0 + \alpha_1 \Omega + \alpha_2 \Omega^2 + \ldots + \alpha_{n-1} \Omega^{n-1}$$

- consequently if the commutator of 2 hermitian operators is 0 (i.e. the operators commute), you
 are able to to assign their product as the mathematical equivalent of the physical product of
 their associated observables
- if the commutator is non-zero, we get Heisenberg's uncertainty principle

Expected Value

- hermitian operators are those which behave well with respect to the inner product: $\langle \Omega \phi, \psi \rangle = \langle \phi, \Omega \psi \rangle$ for each pair $|\psi \rangle$, $|\psi \rangle$
 - this means $\langle \Omega \psi, \psi \rangle \in \mathbb{R}$ for each ψ , denoted $\langle \Omega \rangle_{ab}$
 - subscript denotes dependence on state vector
- Postulate: $\langle \Omega \rangle_{\psi}$ is the expected value of observing Ω repeatedly on the same state ψ
 - let $\lambda_1, ..., \lambda_{n-1}$ be the eigenvalues of Ω
 - prepare the system so that it is in state $|\psi\rangle$ and let us observe the value of Ω : this will yield one of the λ_i
 - repeat this n times, such that each λ_i has been seen p_i times
 - now compute the estimated expected value of Ω as $\frac{1}{n} \sum \lambda_i p_{i_i}$
 - if n is sufficiently large, this will be very close to $\langle \Omega \psi, \psi \rangle$

Variance

- the variance will indicate the spread of distribution around expected value
- introduce the hermitian operator

$$\Delta_{\psi}(\Omega) = \Omega - \left\langle \Omega \right\rangle_{\psi} I$$

• this operates on a generic vector $|\phi\rangle$ as:

$$\Delta_{\psi}(\Omega) \left| \phi \right\rangle = \Omega(\left| \phi \right\rangle) - \left(\left\langle \Omega \right\rangle_{\psi} \right) \left| \phi \right\rangle$$

- i.e. $\Delta_{\psi}(\Omega)$ substracts the mean from the result of Ω
- variance of Ω at $|\psi\rangle$ is then the expectation value of $\Delta_{\psi}(\Omega)$ squared:

$$Var_{\psi}(\Omega) = \left\langle (\Delta_{\psi}(\Omega)) \cdot (\Delta_{\psi}(\Omega)) \right\rangle_{\mathcal{A}}$$

- note this is not too far from $Var(X) = E((X \mu)^2)$
- the variance of the same hermitian varies from state to state: on an eigenvector of the operator, the variance is 0, and the expected value is the corresponding eigenvalue: the observable is sharp on its eigenvectors; there is no ambiguity of outcome

Heisenberg's Uncertainty Principle

- consider observables represented by hermitians Ω_1, Ω_2 and a given state $|\psi
 angle$
- compute $Var_{\psi}(\Omega_1), Var_{\psi}(\Omega_2)$. Do they relate, and if so, how?
- i.e. given 2 observables we would hope to simultaneously minimise each variance such that the outcome was sharp for both
- if the variances were not correlated, you would expect a sharp measure of each observable on a convenient state
- however the variances are correlated
- **Theorem: Heisenberg's uncertainty principle** the product of the variances of 2 arbitrary hermitian operators on a given state is always greater than or equal to one quarter of the square of the expected value of their commutator:

$$Var_{\psi}(\Omega_{1}) \cdot Var_{\psi}(\Omega_{2}) \geq \frac{1}{4} |\left< [\Omega_{1}, \Omega_{2}] \right>_{\psi}^{2}$$

- so the commutator measures how good a simultaneous measure of 2 observables can possibly be
- if the commutator happens to be 0, there is no fundamental limit to the accuracy
- · however there are plenty of operators that do not commute e.g. directional spin operators
- position-momentum also do not commute. The expression of $|\psi\rangle$ with respect to the eigenbasis of each observable paints markedly different stories
 - $|\psi\rangle$ can be expressed in the momentum eigenbasis, which treats $|\psi\rangle$ like a wave, decomposing it into sinusoids
 - $|\psi\rangle$ expressed in the position eigenbasis is made of **Dirac deltas**, peaks zero everywhere except at a point, i.e. decomposed into a weighted sum of peaks

Summary

- observables are represented by hermitian matrices
- the result of an observation is always an eigenvalue of the hermitian
- $\langle \psi | \Omega | \psi \rangle$ represents the expected value of observing Ω on $| \psi \rangle$
- observables do not commute (in general): this means the order of observation matters, and that there is a fundamental limit on our ability to simultaneously measure their values

Measurement

- measurement: act of carrying out an observation on a physical system
 - observable corresponds to specific question posed
 - measuring is the process of asking a specific question and receiving a definite answer
- · classical physics made the false implicit assumptions that
 - the act of measuring does not change the state of the system
 - the result of a measurement on a well-defined state is predictable: if a state is known with certainty, the value of the observable on that state can be anticipated
- these assumptions are wrong:
 - systems are perturbed as a result of measurement
 - only the probability of observing specific values can be calculated: measurement is inherently nondeterministic
- so far we know that as the result of an observation, an observable can only assume one of its eigenvalues
- how frequently will we see a given eigenvalue λ? What happens to the state vector if λ is observed?
- **Postulate:** let Ω be an observable, and $|\psi\rangle$ be a state. If the result of measuring Ω is the eigenvalue λ , the state after measurement will always be the eigenvector $|e\rangle$ corresponding to λ .
 - we say that the system has **collapsed** from $|\psi
 angle$ to |e
 angle
- what is the probability that a (normalised) start state $|\psi\rangle$ will transition to a specific eigenvector $|e\rangle$?
 - this is given by the square of the inner product of the states, $\langle e|\psi\rangle^2$
 - this has the geometrical meaning of the **projection** of $|\psi\rangle$ along $|e\rangle$

Meaning of expected value

- remember the normalised eigenvectors of Ω form an orthogonal basis of the state space, so we can express $|\psi\rangle$ as a linear combination w.r.t. this basis: $|\psi\rangle = \sum c_i |e_i\rangle$
- compute the mean

$$\left<\Omega\right>_{\psi} = \left<\Omega\psi,\psi\right> = \sum |c_i|^2 \lambda_i$$

• this is exactly the mean value of the probability distribution $(\lambda_0, p_0), ..., (\lambda_{n-1}, p_{n-1})$

- p_i : square amplitude of collapse into the corresponding eigenvector

- after measuring an observable, the system transitions to the corresponding eigenvector. If you ask the same question again, you will get the same answer
 - what if you change the question?

Order Matters

- · consider making successive measurements for different observables
- each observable has a different set of eigenvectors to which the system will collapse
- the answer will depend on the order in which questions are posed
- e.g. polarising sheet and a beam of light
 - light can be **polarised**, where the wave only vibrates along a specific plane orthogonal to propogation (as opposed to all possible planes)
 - polarising sheet placed within the beam of light
 - measures polarisation of light in orthogonal basis corresponding to direction of the sheet
 - * filters out photons that collapsed to one of the elements of the basis
 - adding a 2nd sheet
 - oriented in same direction: no difference whatsoever. Asking the same question repeatedly
 - * rotated by 90°: no light passes through. The light that was not filtered by the first sheet is now guaranteed to be filtered by the second.
 - adding a 3rd sheet before/after 1st/2nd
 - * no effect. No light permitted before, and none allowed through the additional sheet
 - placing a 3rd sheet in the middle, at 45°:
 - * light passes through all three sheets:

- · left sheet: measures all light relative to up-down basis
- light in vertical polarisation state that goes through is then in a superposition with respect to the basis of the diagonal sheet
- · the middle sheet then collapses half, filters some, and passes some through
- the light passed through is again in a superposition with respect to the 3rd sheet, so some light again passes through
- $\cdot\,$ note: with 50% filtering by each sheet, only 1/8 of the original light passes through

Summary

- the end state of a measurement of an observable is always one of its eigenvectors
- the probability for an initial state to collapse into an eigenvector of the observable is given by the length squared of the projection
- when measuring several observables sequentially, the order of measurement matters

Dynamics

• so far we have considered static quantum systems, so we need **quantum dynamics** to examine how quantum systems evolve over time

Unitary Transformations

- **Postulate:** the evolution of a quantum system (that is not a measurement) is given by a **unitary operator or transformation**
 - if U is a unitary matrix representing a unary operator, and $|\psi(t)\rangle$ represents a state of the system at time t, then:

$$|\psi(t+1)\rangle = U \,|\psi(t)\rangle$$

- properties of unitary transformations
 - closed under composition: the product of 2 arbitrary unitary matrices is unitary
 - closed under inverse: the inverse of a unitary matrix is unitary
 - multiplicative identity: the identity operator is trivially unitary
- the set of transformations constitutes a group of transformations with respect to composition

System evolution

- assume we have a rule \mathfrak{U} that associates with each instant of time t_i a unitary matrix $\mathfrak{U}[t_i]$
- initial state vector $|\psi\rangle$
- you can then apply each $\mathfrak{U}[t_i]$ to form a sequence of state vectors

$$\mathfrak{U}[t_{0}]\left|\psi\right\rangle,...,\mathfrak{U}[t_{n-1}]...\mathfrak{U}[t_{0}]\left|\psi\right\rangle$$

- this sequence is called an **orbit** of $|\psi\rangle$ under the action of $\mathfrak{U}[t_i]$ at time click t_i
- evolution is **time symmetric**: you can apply $\mathfrak{U}^{\dagger}[t_i]$ to undo the action of a given timestep
- quantum computation will work by
 - placing the computer in an initial state,
 - applying a sequence of unitary operators to the state
 - measuring the output and producing a final state
- the sequence of unitary matrices, i.e. the system dynamics, are determined via the **Schrodinger** equation
 - classical physics gave conservation of energy
 - Hamiltonian: \mathcal{H} the observable for energy, with a hermitian matrix representing it
 - solution with initial conditions allows determination of system evolution

$$\frac{\partial \left|\psi(t)\right\rangle}{\partial t} = -i\frac{2\pi}{\hbar}\mathcal{H}\left|\psi(t)\right\rangle$$

Summary

- quantum dynamics is given by unitary transformations
- unitary transformations are invertible: all closed system dynamics are time reversible, provided that no measurements are involved
- concrete dynamics is given by the Schrodinger equation, which determines the evolution of a quantum system whenever its hamiltonian is specified

Assembling Quantum Systems

Assembly

• consider a system with 2 particles confined to the grid,

- positions of particle 1 can be $\{x_0, ..., x_{n-1}\}$
- positions of particle 2 can be $\{y_0,...,y_{m-1}\}$
- assembling quantum systems means tensoring the state space of their constituents
- **Postulate:** assume we have 2 independent quantum systems *Q*, *Q*′ represented by respective vector spaces V, V′.

The quantum system obtained by merging Q and Q' will have the tensor product $\mathbb{V} \otimes \mathbb{V}'$ as a state space

 using this postulate, we can assemble as many systems as we want: the tensor product is associative, so we can build progressively larger systems

$$\mathbb{V}_{\mathbb{D}}\otimes \ldots \otimes \mathbb{V}_{\mathbb{k}}$$

- by considering the electromagnetic field as a system composed of infinitely many particles, you can use this procedure to make field theory amenable to the quantum approach
- considering the confined particle example, there are nm basic states: $|x_i\rangle \otimes |y_j\rangle$ means particle 1 is at x_i , particle 2 is at y_j
- you can then express the generic state vector as a superposition of the basic states:

$$|\psi\rangle = \sum_{i,j} c_{ij} \, |x_i\rangle \otimes |y_j\rangle$$

- this is a vector in the nm dimensional complex space \mathbb{C}^{mn}
- $|c_{ij}|^2$ gives the probability of finding the two particles at x_i, y_j respectively

Entanglement

- the basic states of the assembled system are the tensor product of basic states of its constituents
- it would be nice if we could rewrite an arbitrary state vector as the tensor product of two states from respective subsystems
- this cannot be done (in general). Consider the following 2 particle system in state $|\psi
 angle$

$$|\psi\rangle = |x_0\rangle \otimes |y_0\rangle + |x_1\rangle \otimes |y_1\rangle = 1 |x_0\rangle \otimes |y_0\rangle 0 |x_0\rangle \otimes |y_1\rangle + 0 |x_1\rangle \otimes |y_0\rangle + |x_1\rangle \otimes |y_1\rangle$$

- attempt to write $|\psi
angle$ as the tensor product of 2 states from respective subsystems

 $(c_0 \mid \! y_0 \rangle + c_1 \mid \! y_1 \rangle) \otimes (d_0 \mid \! y_0 \rangle + d_1 \mid \! y_1 \rangle) = c_0 d_0 \mid \! x_0 \rangle \otimes \mid \! y_0 \rangle c_0 d_1 \mid \! x_0 \rangle \otimes \mid \! y_1 \rangle + c_1 d_0 \mid \! x_1 \rangle \otimes \mid \! y_0 \rangle + c_1 d_1 \mid \! x_1 \rangle \otimes \mid \! y_1 \rangle$

- This would imply $c_0d_0 = c_1d_1 = 1$ and $c_0d_1 = c_1d_0 = 0$, which has no solutions. Therefore $|\psi\rangle$ cannot be written as a tensor product
- what does this mean? If you measure the first particle, you have a 50% chance of finding it at position x_0 . If it is found at x_0 , then, as $|x_0\rangle \otimes |y_1\rangle$ has coefficient 0, there is no chance of finding particle 2 at position y_1 : i.e. particle 2 must be at position y_0 !
- we say that the individual states of the particles are **entangled**
- this holds even if x_i is light years away from y_i : regardless of spatial distance, a measurement's outcome for one particle will always determine the measurement's outcome for the other one
- other states are perfectly able to be decomposed into tensor products of subsystem states, and these are referred to as **separable** states

Spin

- there is a law of conservation of total spin of quantum system
- consider \boldsymbol{z} direction, and the corresponding spin basis, up and down
- consider a composite particle whose total spin is 0: the particle may split up at some point into 2 particles that have non-zero spin
- the spin states of those two particles will then be entangled: the sum of the spins must cancel each other out to conserve total spin
- if we measure the z-direction spin of the left particle in state up ($|\uparrow_L\rangle$), the spin of the right particle must be $|\downarrow_R\rangle$
- the bases for the left and right particles are

-
$$\mathcal{B}_L = \{\uparrow_L, \downarrow_L\}$$

- $\mathcal{B}_R = \{\uparrow_R, \downarrow_R\}$

• the basis for the entire system is:

$$\{\uparrow_L \otimes \uparrow_R, \uparrow_L \otimes \downarrow_R, \downarrow_L \otimes \uparrow_R, \downarrow_L \otimes \downarrow_R\}$$

• the entangled particles can then be described by:

$$\frac{|\uparrow_L \otimes \downarrow_R \rangle + |\downarrow_L \otimes \uparrow_R \rangle}{\sqrt{2}}$$

• when you measure the left particle and it collapses to the state $|\uparrow_L\rangle$, instantaneously, the right particle collapses to the state $|\downarrow_R\rangle$ even if it is millions of light years away

Summary

- the tensor product allows us to build complex quantum systems out of simpler ones
- the new system is not able to be analysed simply in terms of states of the subsystems: an entire set of new states has been created which cannot in general be resolved into their constituents
- entanglement is used in quantum computing for:
 - algorithm design
 - cryptography
 - teleportation
 - decoherence