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Quantum States

Early 20th Century physics

• classical mechanics viewed matter as composed of particles, and light as composed of contin-
uous electromagnetic waves

• diffraction experiment: beam of subatomic particles hitting a crystal diffract in a wave-like
pattern

– de Broglie wavelength associated with matter

• photoelectric effect: an atomhit by a beamof lightmay absorb it, causing electrons transition
to a higher energy orbital

– absorbed energy may be emitted as light causing electrons to transition back to the origi-
nal orbital

– light-matter transactions always occur via discrete packets of energy, i.e. photons

• further experimental evidence: old duality particle-wave theory needed to be replaced by a
theory in which bothmatter and light can exhibit both particle- and wave-like behaviour.

• Young’s double slit experiment: shine light at a boundary with 2 very close slits, between the
light source and an observing wall

– pattern of light on the wall varies between light and dark as a result of interference be-
tween light

– with one slit closed, no interference pattern is observed
– remarkable results:

* double-slit experiment can be performedwith a single photon: if there is a single pho-
ton, why would there be any interference pattern?

* can also beperformedwith electrons, protons, atomic nuclei, bucky balls, all ofwhich
exhibit interference behaviour

• conclusion: rigid distinction betweenwaves and particles as ameans of describing the physical
world is untenable at the quantum level

Quantum States

Particle on a line

• consider a subatomic particle on a line that may only be found at one of several equally spaced
points {𝑥0, ..., 𝑥𝑛−1} separated by distance 𝛿𝑥
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• describe the current state of the particle as a complex vector [𝑐0, ..., 𝑐𝑛−1]𝑇
• denote the particle being at point 𝑖 as |𝑥𝑖⟩ (a ket)
• each basic state has an associated column vector |𝑥𝑖⟩ → 𝛿𝑖𝑗 ∈ ℂ𝑛

• note these vectors form the canonical basis ofℂ𝑛

• in quantum physics, the particle can be in a fuzzy blending of states: all vectors inℂ𝑛 represent
a legitimate physical state

• superposition: an arbitrary state |𝜓⟩ is then a linear combination of the basic states
|𝑥𝑖⟩ , ..., |𝑥𝑛−1⟩with complex amplitudes 𝑐0, ..., 𝑐𝑛−1

– represents particle being simultaneously in all locations, a blending of all |𝑥𝑖⟩

|𝜓⟩ = 𝑐0 |𝑥0⟩ + ... + 𝑐𝑛−1 |𝑥𝑛−1⟩

• every state can therefore be represented as an element ofℂ𝑛 as

|𝜓⟩ → [𝑐0, ..., 𝑐𝑛−1]𝑇

• probability that, after observing the particle, we will detect it at point 𝑥𝑖:

𝑝(𝑥𝑖) =
|𝑐𝑖|2
| |𝜓⟩ |2 = |𝑐𝑖|2

∑𝑗 |𝑐𝑗|2

• clearly 𝑝(𝑥𝑖) ∈ ℝ and 0 ≤ 𝑝(𝑥𝑖) ≤ 1
• when |𝜓⟩ is observed, it will be found in one of the basic states
• kets can be added: |𝜓⟩ + |𝜓⟩′ = [𝑐0 + 𝑐′0, ..., 𝑐𝑛−1 + 𝑐′𝑛−1]𝑇
• a ket |𝜓⟩ and its scalar multiples 𝑐 |𝜓⟩ (for some 𝑐 ∈ ℂ) describe the same physical state
• the length of |𝜓⟩ doesn’t matter as far as physics goes
• it thenmakes sense to work with a normalised ketwith length 1:

|𝜓⟩
| |𝜓⟩ |

• for a normalised ket, we have 𝑝(𝑥𝑖) = |𝑐𝑖|2

Spin

• property of subatomic particles which is the prototypical way to implement qubits
• Stern-Gerlach experiment: electron in presence of magnetic field observed to behave as if it
were a charged spinning top, by acting as a magnet and trying to align itself with the magnetic
field
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– experiment: shoot beam of electrons through a magnetic field oriented in a certain direc-
tion

– beam is split into 2 streams with opposite spin

• differences to classical spinning top:

– electron doesn’t have internal structure: quantum property with no classical analog
– all electrons can be found in 1 of 2 locations, not distributed between (spin can be clock-
wise/anticlockwise)

• for each direction in space, there are only 2 spin states, spin up |↑⟩ and down |↓⟩
• arbitrary state is then a superposition of up and down:

|𝜓⟩ = 𝑐0 |↑⟩ + 𝑐1 ↓

• inner product: modifies vector space into a space with geometry, adding angles, orthogonality,
distance

• inner product of state space allows computation of transition amplitudes, which you can use
to determine the likelihood the state of the system before a specific measurement will change
to another state after measurement has occurred

• consider two normalised states |𝜓⟩, |𝜓′⟩
• let the start state be |𝜓⟩, and the end state a row vector with complex conjugate coordinates of
|𝜓′⟩

• define the bra_ ⟨𝜓′| = |𝜓⟩† = [𝑐′0, ..., 𝑐′𝑛−1]
• the transition amplitude is then the inner product bra-ket

⟨𝜓′|𝜓⟩ = [𝑐′0, ..., 𝑐′𝑛−1]
⎡⎢⎢
⎣

𝑐0
⋮

𝑐𝑛−1

⎤⎥⎥
⎦

• represent the start state, end state, and amplitude of going between these states as:

Figure 1: Transition Amplitude Diagram

• bra-ket approach shifts focus from states to state transitions
• the transitionamplitudebetween twostates is zerowhen twostates areorthogonal: orthogonal
states are mutually exclusive alternatives
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• e.g. an electron can be in arbitrary superposition of spin up and down, but after measurement
in the z-direction, it will always be either up or down, not both up and down

– if the electronwas already in the up state before the z-directionmeasurement, it will never
transition to a down state as a result of that measurement

• every complete measurement of a quantum system has an associated orthonormal basis of all
possible outcomes

• with |𝜓⟩ in the basis {|𝑏0⟩ , ..., |𝑏𝑛−1⟩}, i.e.

|𝜓⟩ =
𝑛−1
∑
𝑖=0

𝑏𝑖 |𝑏𝑖⟩

• each |𝑏𝑖|2 is the probability of ending up in state |𝑏𝑖⟩ after a measurement has beenmade

Summary

• we can associate a vector space with a quantum system, with its dimension reflecting the num-
ber of basic states of the system

• states can be superposed by adding their representing vectors
• a state is left unchanged if its representing vector is multiplied by a complex scalar
• the state space has a geometry given by its inner product: this has a physical meaning, namely
the likelihood of a given state to transition to another one after measurement

• orthogonal states are mutually exclusive

Observables

• physical quantities only make sense with respect to a quantifiable observation
• a physical system can be specified by a pair: (state space, observables)

– state space: set of all states the systemmay occupy
– observables: set of physical quantities able to be observed in each state of the state space

• each observable can be considered a question we can pose to the system: if the system is in a
particular state |𝜓⟩what values can we observe?

• Postulate: each physical observable has a corresponding hermitian operator

– reminder: Hermitian means𝐴† = 𝐴
– an observable is a linear operator: it maps states to states
– the application of an observableΩ to a state vector |𝜓⟩ is the resulting stateΩ |𝜓⟩
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– in generalΩ |𝜓⟩ is not a scalar multiple of |𝜓⟩; they do not represent the same state, i.e.Ω
has modified the state of the system

• Postulate: letΩbe a hermitian operator associatedwith a physical observable. Then the eigen-
values of Ω are the only possible values the observable can take as a result of measuring it on
any given state. The eigenvectors ofΩ form a basis for the state space.

• so observables can be considered legitimate questions we can pose to quantum systems. The
question may be answered with the eigenvalues of the observable

Position

• specific question: “where can the particle be found?”
• what’s the corresponding hermitian operator, 𝑃 , for position?

– how does it operate on basic states e.g. |𝑥𝑖⟩? 𝑃(|𝜓⟩) = 𝑃(|𝑥𝑖⟩) = 𝑥𝑖 |𝜓⟩: 𝑃 acts as multi-
plication by position

– the basic states form a basis, so for an arbitrary stat: 𝑃(∑𝑐𝑖 |𝑥𝑖⟩) = ∑𝑥𝑖𝑐𝑖 |𝑥𝑖⟩

• as a matrix: this is the diagonal matrix whose entries are the 𝑥𝑖 coordinates
• note:

– 𝑃 is trivially hermitian
– all diagonal elements are real
– eigenvalues are 𝑥𝑖 values
– normalised eigenvectors are the basic state vectors

Momentum

• specific question: “what is the particle’s momentum?”
• represented by operator𝑀 , proportional to the rate of change of the state vector across space

𝑀(|𝜓⟩) = −𝑖ℏ𝜕 |𝜓⟩
𝜕𝑥

Spin

• specific question: “for a given direction in space, in which direction is the particle spinning?”

– e.g. up/down in z direction? left/right in x direction? in/out in y direction?

• spin operators:
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𝑆𝑧 = ℏ
2 [1 0

0 −1] , 𝑆𝑦 = ℏ
2 [0 −𝑖

𝑖 0 ] , 𝑆𝑥 = ℏ
2 [0 1

1 0]

• each spin operator has a corresponding orthonormal basis:

– 𝑆𝑧 ∶ {|↑⟩ , |↓⟩}, up and down
– 𝑆𝑦 ∶ {|←⟩ , |→⟩}, left and right
– 𝑆𝑥 ∶ {|↙⟩ , |↗⟩}, in and out

Manipulating Observables

• in physics we frequently add, multiply quantities to produce other meaningful quantities: mo-
mentum as mass*velocity, …

• to what extent can quantum observables be manipulated to obtain other observables?
• ✓ multiplication by a real scalar, 𝑐 ∈ ℝ, 𝑐Ω

– Multiplying a hermitian matrix by a real scalar produces a hermitian matrix

• ×multiplication by a complex scalar: the result may not be hermitian
• ✓ addition of two hermitian matricesΩ1 +Ω2
• set of hermitian matrices of fixed dimension forms a ℝ vector space (but not aℂ one)
• products? e.g.Ω1 ⋅ Ω2. Issues:

– the order in which operators are applied to state vectorsmatters in general, asmatrixmul-
tiplication is not generally commutative

– the product of 2 hermitian operators is not guaranteed to be hermitian

• what does it take for the product of 2 hermitian operators to be hermitian?

– recall ⟨𝐻 ⋅ 𝑉 ,𝑊⟩ = ⟨𝑉 ,𝐻 ⋅ 𝑊⟩ for hermitian𝐻 . Accordingly for hermitianΩ1, Ω2:

⟨Ω1 ⋅ Ω2𝜙, 𝜓⟩ = ⟨Ω2𝜙,Ω1𝜓⟩ = ⟨𝜙,Ω2 ⋅ Ω1𝜓⟩

• forΩ1 ⋅ Ω2 to be hermitian, we need:

⟨Ω1 ⋅ Ω2𝜙, 𝜓⟩ = ⟨𝜙,Ω1 ⋅ Ω2𝜓⟩

• which implies we needΩ1 ⋅ Ω2 = Ω2 ⋅ Ω1
• we define the commutator operator as:

[Ω1, Ω2] = Ω1 ⋅ Ω2 −Ω2 ⋅ Ω1

6



Quantum Theory 2020-12-10

• if [Ω1, Ω2] = 0, then the productΩ1 ⋅ Ω2 = Ω2 ⋅ Ω1 is hermitian
• e.g. [𝑆𝑥, 𝑆𝑦] = 2𝑖𝑆𝑧, i.e. the spin operators do not commute
• note that theproductof ahermitianoperatorwith itself alwayscommutes, asdoes theexponent
operation. Therefore for a single hermitianΩ, we get the entire algebra of polynomials overΩ,
i.e. all operators of the following form commute with one another:

Ω′ = 𝛼0 + 𝛼1Ω+ 𝛼2Ω2 + ... + 𝛼𝑛−1Ω𝑛−1

• consequently if the commutator of 2 hermitian operators is 0 (i.e. the operators commute), you
are able to to assign their product as the mathematical equivalent of the physical product of
their associated observables

• if the commutator is non-zero, we get Heisenberg’s uncertainty principle

Expected Value

• hermitian operators are those which behave well with respect to the inner product: ⟨Ω𝜙, 𝜓⟩ =
⟨𝜙,Ω𝜓⟩ for each pair |𝜓⟩ , |𝜓⟩

– this means ⟨Ω𝜓, 𝜓⟩ ∈ ℝ for each 𝜓, denoted ⟨Ω⟩𝜓
– subscript denotes dependence on state vector

• Postulate: ⟨Ω⟩𝜓 is the expected value of observingΩ repeatedly on the same state 𝜓

– let 𝜆1, ..., 𝜆𝑛−1 be the eigenvalues ofΩ
– prepare the system so that it is in state |𝜓⟩ and let us observe the value ofΩ: this will yield
one of the 𝜆𝑖

– repeat this 𝑛 times, such that each 𝜆𝑖 has been seen 𝑝𝑖 times
– now compute the estimated expected value ofΩ as 1

𝑛 ∑𝜆𝑖𝑝𝑖𝑖
– if 𝑛 is sufficiently large, this will be very close to ⟨Ω𝜓, 𝜓⟩

Variance

• the variancewill indicate the spread of distribution around expected value
• introduce the hermitian operator

Δ𝜓(Ω) = Ω − ⟨Ω⟩𝜓 𝐼

• this operates on a generic vector |𝜙⟩ as:

Δ𝜓(Ω) |𝜙⟩ = Ω(|𝜙⟩) − (⟨Ω⟩𝜓) |𝜙⟩
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• i.e.Δ𝜓(Ω) substracts the mean from the result ofΩ

• variance ofΩ at |𝜓⟩ is then the expectation value ofΔ𝜓(Ω) squared:

𝑉 𝑎𝑟𝜓(Ω) = ⟨(Δ𝜓(Ω)) ⋅ (Δ𝜓(Ω))⟩𝜓

• note this is not too far from 𝑉 𝑎𝑟(𝑋) = 𝐸((𝑋 − 𝜇)2)

• the variance of the same hermitian varies from state to state: on an eigenvector of the operator,
the variance is 0, and the expected value is the corresponding eigenvalue: the observable is
sharp on its eigenvectors; there is no ambiguity of outcome

Heisenberg’s Uncertainty Principle

• consider observables represented by hermitiansΩ1, Ω2 and a given state |𝜓⟩
• compute 𝑉 𝑎𝑟𝜓(Ω1), 𝑉 𝑎𝑟𝜓(Ω2). Do they relate, and if so, how?
• i.e. given 2 observableswewould hope to simultaneouslyminimise each variance such that the
outcome was sharp for both

• if the variances were not correlated, you would expect a sharp measure of each observable on
a convenient state

• however the variances are correlated
• Theorem: Heisenberg’s uncertainty principle the product of the variances of 2 arbitrary her-
mitian operators on a given state is always greater than or equal to one quarter of the square of
the expected value of their commutator:

𝑉 𝑎𝑟𝜓(Ω1) ⋅ 𝑉 𝑎𝑟𝜓(Ω2) ≥
1
4| ⟨[Ω1, Ω2]⟩

2
𝜓

• so the commutator measures how good a simultaneousmeasure of 2 observables can possibly
be

• if the commutator happens to be 0, there is no fundamental limit to the accuracy
• however there are plenty of operators that do not commute e.g. directional spin operators
• position-momentumalsodonot commute. The expressionof |𝜓⟩with respect to the eigenbasis
of each observable paints markedly different stories

– |𝜓⟩ can be expressed in the momentum eigenbasis, which treats |𝜓⟩ like a wave, decom-
posing it into sinusoids

– |𝜓⟩ expressed in the position eigenbasis is made of Dirac deltas, peaks zero everywhere
except at a point, i.e. decomposed into a weighted sum of peaks
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Summary

• observables are represented by hermitian matrices
• the result of an observation is always an eigenvalue of the hermitian
• ⟨𝜓|Ω|𝜓⟩ represents the expected value of observingΩ on |𝜓⟩
• observablesdonot commute (in general): thismeans theorder of observationmatters, and that
there is a fundamental limit on our ability to simultaneously measure their values

Measurement

• measurement: act of carrying out an observation on a physical system

– observable corresponds to specific question posed
– measuring is the process of asking a specific question and receiving a definite answer

• classical physics made the false implicit assumptions that

– the act of measuring does not change the state of the system
– the result of ameasurement on awell-defined state is predictable: if a state is knownwith
certainty, the value of the observable on that state can be anticipated

• these assumptions are wrong:

– systems are perturbed as a result of measurement
– only the probability of observing specific values can be calculated: measurement is inher-
ently nondeterministic

• so far we know that as the result of an observation, an observable can only assume one of its
eigenvalues

• how frequently will we see a given eigenvalue 𝜆? What happens to the state vector if 𝜆 is ob-
served?

• Postulate: letΩ be an observable, and |𝜓⟩ be a state. If the result of measuringΩ is the eigen-
value 𝜆, the state after measurement will always be the eigenvector |𝑒⟩corresponding to 𝜆.

– we say that the system has collapsed from |𝜓⟩ to |𝑒⟩

• what is the probability that a (normalised) start state |𝜓⟩will transition to a specific eigenvector
|𝑒⟩?

– this is given by the square of the inner product of the states, ⟨𝑒|𝜓⟩2

– this has the geometrical meaning of the projection of |𝜓⟩ along |𝑒⟩
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Meaning of expected value

• remember the normalised eigenvectors ofΩ form an orthogonal basis of the state space, so we
can express |𝜓⟩ as a linear combination w.r.t. this basis: |𝜓⟩ = ∑𝑐𝑖 |𝑒𝑖⟩

• compute the mean

⟨Ω⟩𝜓 = ⟨Ω𝜓,𝜓⟩ = ∑|𝑐𝑖|2𝜆𝑖

• this is exactly the mean value of the probability distribution (𝜆0, 𝑝0), ..., (𝜆𝑛−1, 𝑝𝑛−1)

– 𝑝𝑖: square amplitude of collapse into the corresponding eigenvector

• after measuring an observable, the system transitions to the corresponding eigenvector. If you
ask the same question again, you will get the same answer

– what if you change the question?

Order Matters

• consider making successive measurements for different observables
• each observable has a different set of eigenvectors to which the systemwill collapse
• the answer will depend on the order in which questions are posed
• e.g. polarising sheet and a beam of light

– light can be polarised, where the wave only vibrates along a specific plane orthogonal to
propogation (as opposed to all possible planes)

– polarising sheet placed within the beam of light

* measures polarisation of light in orthogonal basis corresponding to direction of the
sheet

* filters out photons that collapsed to one of the elements of the basis

– adding a 2nd sheet

* oriented in same direction: no difference whatsoever. Asking the same question re-
peatedly

* rotated by 90°: no light passes through. The light that was not filtered by the first
sheet is now guaranteed to be filtered by the second.

– adding a 3rd sheet before/after 1st/2nd

* no effect. No light permitted before, and none allowed through the additional sheet

– placing a 3rd sheet in the middle, at 45°:

* light passes through all three sheets:
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· left sheet: measures all light relative to up-down basis
· light in vertical polarisation state that goes through is then in a superpositionwith
respect to the basis of the diagonal sheet

· the middle sheet then collapses half, filters some, and passes some through
· the light passed through is again in a superposition with respect to the 3rd sheet,
so some light again passes through

· note: with 50% filteringbyeach sheet, only 1/8of theoriginal light passes through

Summary

• the end state of a measurement of an observable is always one of its eigenvectors
• the probability for an initial state to collapse into an eigenvector of the observable is given by
the length squared of the projection

• whenmeasuring several observables sequentially, the order of measurement matters

Dynamics

• so far we have considered static quantum systems, sowe need quantumdynamics to examine
how quantum systems evolve over time

Unitary Transformations

• Postulate: the evolution of a quantum system (that is not ameasurement) is given by aunitary
operator or transformation

– if 𝑈 is a unitary matrix representing a unary operator, and |𝜓(𝑡)⟩ represents a state of the
system at time 𝑡, then:

|𝜓(𝑡 + 1)⟩ = 𝑈 |𝜓(𝑡)⟩

• properties of unitary transformations

– closed under composition: the product of 2 arbitrary unitary matrices is unitary
– closed under inverse: the inverse of a unitary matrix is unitary
– multiplicative identity: the identity operator is trivially unitary

• the set of transformations constitutes a group of transformationswith respect to composition
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System evolution

• assume we have a rule 𝔘 that associates with each instant of time 𝑡𝑖 a unitary matrix 𝔘[𝑡𝑖]
• initial state vector |𝜓⟩
• you can then apply each 𝔘[𝑡𝑖] to form a sequence of state vectors

𝔘[𝑡0] |𝜓⟩ , ..., 𝔘[𝑡𝑛−1]...𝔘[𝑡0] |𝜓⟩

• this sequence is called an orbit of |𝜓⟩ under the action of 𝔘[𝑡𝑖] at time click 𝑡𝑖
• evolution is time symmetric: you can apply 𝔘†[𝑡𝑖] to undo the action of a given timestep

• quantum computation will work by

– placing the computer in an initial state,
– applying a sequence of unitary operators to the state
– measuring the output and producing a final state

• the sequenceof unitarymatrices, i.e. the systemdynamics, are determined via theSchrodinger
equation

– classical physics gave conservation of energy
– Hamiltonian: ℋ the observable for energy, with a hermitian matrix representing it
– solution with initial conditions allows determination of system evolution

𝜕 |𝜓(𝑡)⟩
𝜕𝑡 = −𝑖2𝜋ℏ ℋ |𝜓(𝑡)⟩

Summary

• quantum dynamics is given by unitary transformations
• unitary transformations are invertible: all closed systemdynamics are time reversible, provided
that nomeasurements are involved

• concrete dynamics is given by the Schrodinger equation, which determines the evolution of a
quantum systemwhenever its hamiltonian is specified

Assembling Quantum Systems

Assembly

• consider a systemwith 2 particles confined to the grid,
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– positions of particle 1 can be {𝑥0, ..., 𝑥𝑛−1}
– positions of particle 2 can be {𝑦0, ..., 𝑦𝑚−1}

• assembling quantum systemsmeans tensoring the state space of their constituents
• Postulate: assume we have 2 independent quantum systems𝑄,𝑄′ represented by respective
vector spaces 𝕍, 𝕍′.
The quantum system obtained by merging 𝑄 and 𝑄′ will have the tensor product 𝕍 ⊗ 𝕍′ as a
state space

• using this postulate, we can assemble as many systems as we want: the tensor product is asso-
ciative, so we can build progressively larger systems

𝕍𝟘 ⊗ ... ⊗ 𝕍𝕜

• by considering the electromagnetic field as a system composed of infinitelymany particles, you
can use this procedure to make field theory amenable to the quantum approach

• considering the confined particle example, there are𝑛𝑚 basic states: |𝑥𝑖⟩⊗ |𝑦𝑗⟩means particle
1 is at 𝑥𝑖, particle 2 is at 𝑦𝑗

• you can then express the generic state vector as a superposition of the basic states:

|𝜓⟩ = ∑
𝑖,𝑗

𝑐𝑖𝑗 |𝑥𝑖⟩ ⊗ |𝑦𝑗⟩

• this is a vector in the 𝑛𝑚 dimensional complex spaceℂ𝑚𝑛

• |𝑐𝑖𝑗|2 gives the probability of finding the two particles at 𝑥𝑖, 𝑦𝑗 respectively

Entanglement

• thebasic statesof theassembled systemare the tensorproductof basic statesof its constituents
• it would be nice if we could rewrite an arbitrary state vector as the tensor product of two states
from respective subsystems

• this cannot be done (in general). Consider the following 2 particle system in state |𝜓⟩

|𝜓⟩ = |𝑥0⟩ ⊗ |𝑦0⟩ + |𝑥1⟩ ⊗ |𝑦1⟩ = 1 |𝑥0⟩ ⊗ |𝑦0⟩ 0 |𝑥0⟩ ⊗ |𝑦1⟩ + 0 |𝑥1⟩ ⊗ |𝑦0⟩ + |𝑥1⟩ ⊗ |𝑦1⟩

• attempt to write |𝜓⟩ as the tensor product of 2 states from respective subsystems

(𝑐0 |𝑦0⟩+𝑐1 |𝑦1⟩)⊗(𝑑0 |𝑦0⟩+𝑑1 |𝑦1⟩) = 𝑐0𝑑0 |𝑥0⟩⊗|𝑦0⟩ 𝑐0𝑑1 |𝑥0⟩⊗|𝑦1⟩+𝑐1𝑑0 |𝑥1⟩⊗|𝑦0⟩+𝑐1𝑑1 |𝑥1⟩⊗|𝑦1⟩
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• This would imply 𝑐0𝑑0 = 𝑐1𝑑1 = 1 and 𝑐0𝑑1 = 𝑐1𝑑0 = 0, which has no solutions. Therefore |𝜓⟩
cannot be written as a tensor product

• what does this mean? If you measure the first particle, you have a 50% chance of finding it at
position𝑥0. If it is found at𝑥0, then, as |𝑥0⟩⊗|𝑦1⟩ has coefficient 0, there is no chance of finding
particle 2 at position 𝑦1: i.e. particle 2 must be at position 𝑦0!

• we say that the individual states of the particles are entangled
• this holds even if 𝑥𝑖 is light years away from 𝑦𝑖: regardless of spatial distance, a measurement’s
outcome for one particle will always determine the measurement’s outcome for the other one

• other states are perfectly able to be decomposed into tensor products of subsystem states, and
these are referred to as separable states

Spin

• there is a law of conservation of total spin of quantum system
• consider 𝑧 direction, and the corresponding spin basis, up and down
• consider a composite particle whose total spin is 0: the particle may split up at some point into
2 particles that have non-zero spin

• the spin states of those two particles will then be entangled: the sum of the spins must cancel
each other out to conserve total spin

• if we measure the z-direction spin of the left particle in state up (|↑𝐿⟩), the spin of the right par-
ticle must be |↓𝑅⟩

• the bases for the left and right particles are

– ℬ𝐿 = {↑𝐿, ↓𝐿}
– ℬ𝑅 = {↑𝑅, ↓𝑅}

• the basis for the entire system is:

{↑𝐿 ⊗ ↑𝑅, ↑𝐿 ⊗ ↓𝑅, ↓𝐿 ⊗ ↑𝑅, ↓𝐿 ⊗ ↓𝑅}

• the entangled particles can then be described by:

|↑𝐿 ⊗ ↓𝑅⟩ + |↓𝐿 ⊗ ↑𝑅⟩√
2

• when you measure the left particle and it collapses to the state |↑𝐿⟩, instantaneously, the right
particle collapses to the state |↓𝑅⟩ even if it is millions of light years away

14
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Summary

• the tensor product allows us to build complex quantum systems out of simpler ones
• the new system is not able to be analysed simply in terms of states of the subsystems: an entire
set of new states has been created which cannot in general be resolved into their constituents

• entanglement is used in quantum computing for:

– algorithm design
– cryptography
– teleportation
– decoherence
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