Summary 2020-10-07

Table of Contents

Use Cases

« use case: informally: text story of an actor using a system to meet goals

emphasises user goals and perspective

* who is using the system?
* what are their typical scenarios of use?
* what are their goals?

formally: collection of related success/failure scenarios that describe an actor using the
SuD to support a goal

primarily capture functional requirements

define a contract of how a system will behave

 SuD: system under discussion
« actor: something with behaviour; e.g. person, computer system, organisation
« scenario/use case instance: specific sequence of actions/interactions between actors and SuD

Level of Detail

+ brief: terse one-paragraph summary of the main success scenario
+ casual: informal multi-paragraph format covering various scenarios
« fully dressed: formal writing of each step and variations in detail, with supporting material

Use case variants

« main success scenario: ideal use case; mandatory element

- “happy path”, typical flow
- usually has no conditions/branching

« alternative scenario: optional, enhances understanding, provides some alternative behaviour
- covered in Extensions section when fully dressed

Actors

« primary actor: has user goals fulfilled through using services of SuD

Summary 2020-10-07

« supporting actor: provides a service to SuD to clarify external interfaces/protocols

- typically a computer system (e.g. payment authorisation system) but can be an organisa-
tion or person

« offstage actor: has an interest in behaviour of the use case, but is not primary/supporting

- e.g. tax agency
- important to include to ensure all stakeholder requirements are captured

Importance

« influences design, implementation, project management
+ key source of information for OO analysis/testing
« use cases should be strongly driven by project goals

Use case Model

+ Use case model: model of system functionality/environment

- primarily: set of written use cases
- optionally: includes UML use case diagram

Use case Diagram

« show primary actors on LHS
+ show supporting actors on RHS

Summary 2020-10-07

system boundary NextGen POS _ _ communication
N -7
T~—_e -
7
4
% '
~ | Process® alternate
notation for
Customer a computer
Payment system actor
Authorization o _-7
. Service /)
/ YA Handle Returns J/
\ «actor» d
actor Cashier Tax Calculator
«actor»
Accounting
System
Manager
«actor» Analyze Activity oo
Sales Activity || Y
System
Manage Security) o _
/_f/ \\ ~ ~
\ \.\ N .
System Manage Users N
Administrator / use case
13

Figure 1: Use case diagram

Summary 2020-10-07

For a use case context Show computer system actors
diagram, limit the use cases to with an alternate notation to
user-goal I(\avel use cases. human actors.
\ [
N \
N \
N
N NextGen \
\\ N
~ @

R)
//—\ «actor»
Process Sale Payment
Authorization

Service
Cashier
primary actors on supporting actors
the left on the right

Figure 2: Use case notation

Relevance of Use cases

To check whether use-cases are at the right level for application requirements analysis, you can apply
a number of tests.

+ Boss test: your boss must be happy if, when asking you what you have been doing, you respond
with the use case

« Elementary business process test: a value-adding process undertaken by one person in one
location in response to a business event

+ Size test: tasks shouldn’t be a single step. They shouldn’t be too many steps.

- Fully dressed: 3-10 pages
Example:

+ negotiate a supplier contract: much broader/longer than an EBP
+ handle returns: OK with the boss. Seems like EBP. Good size.
+ Login: fails boss test

Summary 2020-10-07

+ Move piece on game board: single step - fails size test.

Include relationship

« used to reduce repetition in multiple use cases
« refactor common part of use cases into subfunction use case

Extensions:

6b. Paying by credit: Include Handle Credit Payment.

NextGen POS

Process Sale

Cashier «include» - - | ~ _dnclude» «actor»
P -~ | ~ Accounting

P ,/_,/ «include» ~\ System

Handle Check Handle Cash Handle Credit
Payment Payment Payment
Customer Y\’ = «actor»
) ~ - I «include» / Credit
«include» ™ | - «include» Authorization

O ~ ~ Service

UML notation:
the base use case
points to the
included use case

Process Rental
Handle Returns

Manage Users

-0

Figure 3: Use case include relationship

Extend relationship

« used to add new extensions/conditional steps to a use case

- base case is complete without the extension
- extension relies on base case
- base case doesn’t know about extension

+ extension analogous to wrapper or subclass

Summary 2020-10-07

+ used infrequently: most often when you cannot modify the original
+ where possible, modify use case text instead

S subject, system boundary

Y
«Subsystem»

Checkout .
multiplicity extend relationship

«extend »
\zssomahon
actor
\ 1.7 \{‘7
P Checkout — ~—
? actor

Customer

«mclude» \ v

include —T Payment - ; ‘ ‘ |
relationship g _,..----’71

mult mhf:lty Payment Service

use case™
~_ Manage
Users

© uml-diagrams.org

Administrator

Figure 4: Use case extend and include

00 Analysis

+ 00 analysis: creating description of domain from OO perspective

analyse use cases and identify objects/concepts in problem domain

concepts/behaviours captured in Domain models and Sequence diagrams
abstract level of intention

intended to help understand the domain

+ domain models and system sequence diagrams are the primary artefacts

Summary 2020-10-07

Domain Models

« domain model: representation of real-situation conceptual classes

not a software object

shows noteworthy domain concepts/objects
is an OO artefact

focus on explaining things and products important to the particular business domain

+ represented visually using UML class diagram: show conceptual classes, attributes and associ-
ations

+ no method signatures defined

« visual dictionary of noteworthy abstractions, domain vocabulary, information content of the
domain

« should be recognisable to a non-programmer from the domain

« captures static context of system

« attribute or class?

- if X not considered a number/text in the real world, X is probably a conceptual class, not
an attribute

+ don’t use attributes as foreign keys: show the association

Identifying conceptual classes

Approaches:

+ noun phrase analysis: use carefully, but often suggestive
« use published category list/existing models for common domains

Associations

« association: relationship between classes indicating a meaningful/interesting connection
+ include associations when

- significant in the domain
- knowledge of the relationship needs to be preserved

Attributes

« attribute: logical data value of an object

Summary

2020-10-07

« include when requirements suggest a need to remember information
+ do not show visibility: this is a design detail

Creating a Domain Model

1. find conceptual classes

2. draw as classes in UML class diagram

3. add associations and attributes

Description Class

« description class: contains information that describes something else

« used when:

- groups of items share the same description

- items need to be described, even when there are currently no instances

Item

description
price

serial number
itemID

| ProductDescription

description
price
itemlID

Describes

Item

Figure 5: Description class example 1

*

serial number

Worse

Better

Summary 2020-10-07

Flight /7
i Airport
date Flies-to Worse
number * 1 \L
time
Flight - —
Described-by FlightDescription Better
qme * 1 | number
time
*
Describes-flights-to
1
Airport

name

Figure 6: Description class example 2

System Sequence Diagrams

+ system sequence diagram: shows chronology of system events generated by external actors
« captures dynamic context of system

« one SSD for one scenario of a use case

+ helps identify external input events to the system (i.e. system events)

+ indicates events design needs to handle

« treat system as a black box: describe what it does without describing implementation details
« choose system events that don’t tie you to an implementation

- events should remain abstract: show intent, not the means
- e.g.enterItembetterthan scan

« all external actors (human or not) for the scenario are shown
« can show inter-system interactions, e.g. POS to external credit payment authoriser

Summary 2020-10-07

External actor
/ to system Systemas a

A UML loop interaction frame

ith 2 bool q e black box
with a boolean guar A\
Proc ale Scenari Syst
- Cashier :System
I I
i makeNewSale ._f}/'An event: A
Simple cash-only Pre le scenario: | > :
| e —— / ; message with
more items
1. Customer arrives at a POS checkout oop : enterltem(itemID, quantity) o parameters
with goods and/or services to purchase. | »
2. Cashier starts a new sale. | |
3. Cashier enters item identifier. L description, total |
4. System records sale line item and T ::xi”ﬂ
presents item description, price, and 1 1 A response (optional):
running total. | ! o
Cashier repeats steps 3-4 until indicates ! ! Return value(s) associated
done. ‘ endSale » with the previous message
5. System presents total with taxes ! !
calculated. i ‘ i
6. Cashier tells Customer the total, and Moo ______lotalwithtaxes ____________ |
asks for payment. ! }
7. Gustomer pays and System handies \ i
payment. ! makePayment(amount) !
>
| |
l |
|
| mmmmmmmm change due, receipt ___________ 1
- |
|

| 25

Figure 7: System Sequence Diagram

Object-Oriented Design Models

00 Domain Models

+ Analysis: investigation of problem and requirements
+ 00 Software Analysis: finding and describes objects/concepts in the problem domain

00 Design Models

« Design: conceptual solution that meets the requirements of the problem
+ 00 Software Design: defining software objects and their collaboration

Input Artefacts to OO design

+ Use case text describes functional requirements that design models must realise
« Domain models provide inspiration for software objects in design models
« System sequence Diagram indicates an interaction between users and system

10

Summary 2020-10-07

00 Software Design

process of creating conceptual solution: defining software objects and their collaboration
architecture

interfaces: methods, data types, protocols
« assignment of responsibilities: principles and patterns

Output Artefacts of 00SD

« Static model: Design class diagram
« Dynamic model: Design sequence diagram

Static Design Models

« static design model: representation of software objects, defining class names, attributes and
method signatures

- visualised via UML class diagram, called design class diagram

Comparison to Domain models

« Domain model: conceptual perspective
- noteworthy concepts, attributes, associations in the domain
+ Design model: implementation perspective
- roles and collaborations of software objects
« Domain models inspire design models to reduce the representational gap

- talk the same language in software and domain

Dynamic Design Models

« dynamic design model: representation of how software objects interact via messages

- visualised as UML Sequence diagram or UML Communication diagram

n

Summary 2020-10-07

« Design Sequence diagram: illustrates sequence/time ordering of messages between software
objects

- helpful in assigning responsibilities to software objects
SSD vs DSD
« System Sequence Diagram treats the system as a black box, focusing on interactions between
actors and the system

+ Design sequence diagram illustrates behaviours within the system, focusing on interaction be-
tween software objects

Lifeline Notation

lifeline box representing the class
ﬁ Font, or more precisely, that Font is

lifeline box representing a

named instance an instance of class Class cean

instance of a metaclass

lifeline box representing an
unnamed instance of class Sale

- . «metaclass»

Listis an interface
lifeline box representing an lifeline box representing
instance of an ArrayList class, one instance of class Sale, in UML 1.x we could not use an
parameterized (templatized) to selected from the sales interface here, but in UML 2, this (or
hold Sale objects ArrayList <Sale> collection an abstract class) is legal

sales: - et
ArrayList<Sale> o. o sales[i] : Sale x : List
e - ‘ 1
. . I
S ; |
related ! |
example ! !

Figure 8: Lifeline Notation

12

Summary 2020-10-07

Reference frames
sd AuthenticateUser)
‘B :C
CA ‘B :C | ‘
! ! ‘ authenticate(id) .| |
doX ! ! ! —authenticate(id),, }
¢ > doA | 1 ! doM1 ‘
' g doB ! | >
I I |
! I I ! doM2 .;}
- authenticate(id ref ' AuthenticateUser | i
| i |
I | |
| | |
: 1 I
! ref DoFoo sd DoFoo J
I
i C
/ :B :C
[| |
interaction occurrence L : doX >
o | |
note it covers a set of lifelines o i doY h'..J:

I |
note that the sd frame it relates to : doZ >
has the same lifelines: B and C : }

Figure 9: Reference Frames
Loop frames
. lineltemsli] : o
: Sale SalesLineltem _Thls lifeline box repres_ents one
€ instance from a collection of many
SalesLineltem objects.

I
t= gefTotal |
|
|

T
I
I
|
| : | lineltemsfi] is the expression to
loop J [i < liheltems.size] I select one element from the
| ! collection of many
|
|
|
|
|
|
|

Y

t = get total
st = getSubtota SalesLineltems; the 1“ value
refers to the same <4 in the guard
in the LOOP frame

an action box may contain arbitrary language
statements (in this case, incrementing ')

it is placed over the lifeline to which it applies

Figure 10: Loop Frame

13

Summary 2020-10-07

00 Implementation

« Implementation: concrete solution that meets the requirements of the problem
+ 00 Software Implementation: implementation in OO languages and technologies

Translating design models to code

build least-coupled classes first, as more highly coupled classes will depend on these
+ use Map for key-based lookup
+ use List for growing ordered list

declare variable in terms of the interface (e.g. Map over HashMap)

Visibility

« visibility: ability of an object to see/refer to another object
+ objects require visibility of each other in order to cooperate
+ e.g. for A to send a message to B, B must be visible to A

Achieving visibility

A can get visibility of B in 1 of 4 ways:

B is an attribute of A
B is a parameter of a method of A
B is a (non-parameter) local object in a method of A

N =

B has global visibility

State Machines

+ state machine: behaviour model capturing dynamic behaviour of an object in terms of

- states: condition of an object at a moment in time
- event: significant/noteworthy occurrence that causes the object to change state

- transition: directed relationship between two states, such that an event can cause the

object to change states per the transition

« visualised via UML State machine diagram

14

Summary 2020-10-07

When to apply state machine diagrams?

state-dependent object: reacts differently to events depending on its state

- e.g. elevator

state-independent object: reacts uniformly to all events

- e.g. automatic door

state-independent w.r.t a particular event: responds uniformly to a particular event

- e.g. microwave state-independent w.r.t cancel

Consider state machines for state-dependent objects with complex behaviour

Domain guidance:

- business information systems: state machines are uncommon
- communications/control: state machines are more common (e.g. Berkeley socket)

UML Details

« transition action: action taken when a transition occurs
- typically represents invocation of a method
« guard: pre-condition to a transition

- if false, transition does not proceed

states H o .
‘ A transition When object is in State A:

... action if trigger event occurs and guard is true
then

State A } trigger | guard] / action State B perform the behaviour action and
A guard _/ : i : transition object to State B.

Figure 11: Transition actions and guards

« nested states: substates inherit transitions of the superstate

15

Summary 2020-10-07

Pickup receiver QA superstate
Y - \\"?/) Active ﬁ\\
‘ Idle) '
\, A / "\\ / *‘\\
| PlayingDialTone | Talking |
& N / N %
\\\ajg up
digit digit connected ™~ A substate
- o , Y
+ Transition into Active (via Pickup receiver) \\//ﬂgfg—«\\ complete S\
transitions into substate PlayingDialTone . { Dialing /44 Connecting /ﬁ.
+ Al substates of Active inherit the hang up N S —)

transition. -

22

Figure 12: Nested States

+ choice pseudostates: dynamic conditional branch

- can have as many branches as needed
- canuse an [else] branch to follow if no other guards are true

Entered PIN [PIN Correct] / Display Menu]
I Entering PIN | Selecting
— Transaction

Entered PIN [PIN Incorrect] / Stun Patron

Calling
Police

[PIN Correct] / Display Menu Selecting
Transaction

[PIN Incorrect] / Stun Patron

Entered PIN

Entering PIN

Calling
Police

Figure 13: Choice Pseudostate

Implementation Details

« use an enumeration for states

16

Summary

2020-10-07

Integer Stream Example eventA()

flastX = x

/\

STATE2

STATE1

o

Initial

eventA(x) [x > lastX]
/otherClass.doStuff(x - lastX)

eventB()

States and Events should have informative names,
such as:

* eventA = nextIinStream

* eventB = stopFinding

¢ STATE1 = WAITING_FOR_NEXT

* STATE2 = WAITING_FOR_LARGER

Final

Figure 14: Implementation

public class IncreasingPairFinder {
// enum for all the states of the state machine
enum State { STATE1l, STATE2, FINAL }
// initialise to start state
State state = State.STATE1l;
int lastX;

// trigger
public void eventA(int x) {
if (state == State.STATE1l) {
// action
lastX = x;
// transition
state = State.STATE2;
} else if (state == State.STATE2) {
// condition
if (x > lastX) {
// action
otherClass.doStuff(x - lastX);
// transition
state = State.STATE1;
+
}
}

public void eventB() {
if (state == State.STATE1l) {
state = State.FINAL;
}

17

Summary 2020-10-07

Architecture

« Larman: Chs 13, 33

Software Architecture

+ software architecture: large scale organisation of the elements in a software system
+ descisions:

structural elements: what are the components of the system?

interfaces: what interfaces do elements expose?

collaboration: how do the elements work together according to the business logic?

composition: how can elements be grouped into larger subsystems?

Architectural Analysis
« architectural analysis: process of identifying factors that will influence the architecture, un-
derstand their variability and priority, and resolve them

- identify and resolve non-functional requirements in the context of functional require-
ments

- challenge: what questions to ask, weighing the trade-offs, knowing the many ways to re-
solve architecturally significant factors

+ goal: reduce risk of missing critical factor in the design of a system

- focus effort on high priority requirements
- align the product with business goals

Architectural analysis identifies and analyses:

« architecturally significant requirements: are those which can have a significant impact on
the system design, especially if they are not accounted for early in the process
« variation points: variation in existing current system/requirements

- e.g. multiple tax calculator interfaces that need to be supported

« potential evolution points: speculative points of variation that may arise in the future, but are
not captured in existing requirements

18

Summary 2020-10-07

Architecturally significant functional requirements

+ Auditing

« Licensing

+ Localisation

« Mail

+ Online help

+ Printing

+ Reporting

« Security

+ System management
+ Workflow

Architecturally significant Non-functional Requirements

Usability
Reliability
« Performance

Supportability

Effects of requirements on design
« the answer to the following questions significantly affects the system design
+ how do reliability and fault-tolerance requirements affect the design?

- e.g. POS: for what remote services (tax calculator) will fail-over to local services be
allowed?

+ how do the licensing costs of purchased subcomponents affect profitability?

- e.g. more costly database server weighed against development time

Steps
« start early in elaboration phase
« architectural factors/drivers: identify and analyse architectural factors

- architectural factors are primarily non-functional requirements that are architecturally sig-
nificant

19

Summary 2020-10-07

- overlaps with requirements analysis
- some should have been identified during the inception phase, and are now investigated in
more detail

« architectural decisions: for each factor, analyse alternatives and create solutions, e.g.:

remove the requirement

custom solution

stop the project

hire an expert

Priorities

« inflexible constraints

- must run on Linux
- budget for 3rd party components is X
- legal compliance

« business goals

- demo for clients at tradeshow in 18 months
- competitor driven window of opportunity

« other goals

- extendible: new release every 6 months

Architectural Factor Table

+ documentation recording the influence of factors, their priorities, and variability
Fields

 Factor
« Measures, quality scenarios

Variability: current, future evolution

Impact of factor to

- stakeholders
- architecture
- other factors

Priority for success
+ Risk

20

Summary 2020-10-07

Technical Memo

« records alternative solutions, decisions, influential factors, and motivations for noteworthy is-
sues/decisions

Contents

* Issue

Solution summary
» Factors
Solution

Motivation

Unresolved Issues

Alternatives Considered

Logical Architecture

+ logical architecture: large-scale organisation of software classes into packages, subsystems
and layers

+ deployment architecture: mapping of system onto physical devices, networks, operating sys-
tems, etc.

- not a part of logical architecture

Layered architecture
« layers: coarse-grained grouping of classes, packages, or subsystems that has cohesive respon-
sibility for a major aspect of the system

- very common
- vertical division of a system into subsystems

. eg.

- Ul
- application logic/domain objects
- technical services: general purpose objects/subsystems e.g. interfaces with DB

« strict layered architecture: each layer only calls upon the services of the layer directly below
it

- common in network protocol stacks

21

Summary 2020-10-07

« relaxed layered architecture: higher layer calls upon several lower layers
- common in information systems

« partitions: horizontal division of parallel subsystems within a layer
« benefits:

- prevent high coupling: changes don’t ripple through entire system, and hard to divide
work

- promote reuse: application logic is distinct from Ul
- ability to change underlying technical services

UML Package Diagram

ul

Swing &

not the Java
Swing libraries, but
our GUI classes
based on Swing

Web

S

\
1
\

Software elements are
organized into layers,

P

\

ot \
/ \Dependencm i.e., Ul clasdes

. - |
i.e., Layered Domain ¥ uses Domain classes :
Architecture \’ — — —)
‘ Sales Payments ‘ Taxes ‘ ft’
/I
/s
7
v ;’/ ,’/ \
I Pie
Technical Services 4 T Relaxed Layered
_ Architecture: A higher
Sl layer call upon the
‘ Persistence ‘ Logging RulesEngine lower layer (ﬂDt the
x /’ / directly below one)
is provided in Workshop \
Partitions

Figure 15: Layers and Partitions

22

Summary

2020-10-07

Information Systems - Typical Logical Architecture

GUI windows
reports
speech interface

HTML, XML, XSLT, JSP, Javascript, ...

handles presentation layer requests
workflow

session state

window/page transitions
consolidation/transformation of disparate
data for presentation .

handles application layer requests
implementation of domain rules
domain services (POS, Inventory)
- services may be used by just one
application, but there is also the possibility
of multi-application services

very general low-level business services
used in many business domains
CurrencyConverter

-

.

(relatively) high-level technical services
and frameworks
Persistence, Security

low-level technical services, utilities,
and frameworks

data structures, threads, math,

fite, DB, and network I/O

Figure 16: IS Logical Architecture

e
>

e
P

.
\

S
Py

iy

e
Py

ul
(AKA Presentation, View)

more
app
specific
A

 —

Application
(AKA Workflow, Pracess,
Mediation, App Controller)

dependency

i

Domain
(AKA Business,
Application Logic, Madel)

Business Infrastructure
(AKA Low-level Business Services)

—

(AKA Technical Infrastructure,

Technical Services
High-level Technical Services)

(AKA Core Services, Base Services,
Low-level Technical Services/Infrastructure)

Foundation

width implies range of applicability

UML Component Diagram - Implementation View

« component: modular part of a system that encapsulates its contents, and is replaceable within

its environment

- can be aclass, but can also be external resources (e.g. DB) and services

« component diagram: show how to implement software system at a high level

- initial architectural landscape of the system

- defines behaviour: provided/required interfaces

23

Summary 2020-10-07

alternate notation to

indicate using or e sqL «component»
requiring an interface. o SO DB
R] alternate
«gystem- o ~ JMS ... notation for
NextGen o MessagingService a component

Interface Standards:
* SQL (Structured Query Language)
* JMS (Java Message Service)

Figure 17: UML Components

intemnal structure structured classifier — subsystem component
compartment / \

«subsystem» WebStore €] «subsystem» Warehouses & | provided
interface
e internal structure internal structure
Search Manage
ProductSearch Inventory Inventory
O—{] -—=>0— +H—O0<—1
|
}
port I
delegation required 1
proviced connector interface | dependency
interface bsvst A i 1
subsystem» Accounting
role, part component ki 4 2 9 ﬂ]
internal structure :
Manage Manage |
OnlineShopping Orders Inventory |
— G 0—1 — o]
required
provided dependency interface
interface assembly connector ga”age assembly connector
ball-and-socket ustomers ball-and-socket
Manage
UserSession Customers
co—L ==
T 74
delegation connector delegation connector

Figure 18: UML Components 2

Architectural Improvement

Strategies Options that might be considered: buy, build, modify

« Buy: Use COTS

- pros: short development time, low starting cost
- cons: business differences, control over software, long term cost

24

Summary 2020-10-07

+ Build: build a new system from the ground up

- pros: built-for-purpose for current needs
- cons: high cost, long timeline, high risk for transition

+ Modify: modify existing solution

- pros: simpler transition, control of software
- cons: cost and delay tradeoff

+ Challenge: planning and executing an acceptable path

Handling issues: some ideas

responsiveness: host system locally, reduce Internet communications

reliability: update networking

modifiability: remove old/redundant systems

functionality: add high priority, low complexity features

Modelling and Design in the Software Process

o Larman: Chs 4,8,12,14
« Unified Process: iterative/incremental software development

develcpment cycle
J':erp tion : ph&se
/l S /\ /
ine. alabaration consiruchion fransition
| A A A
milestone release increment final production

release
Tha differance

An iteration end-
point when some
significant decision

ar evaluation occurs,

A stable executable
subset of the final
product. The end of
aach iteration is a
minor release.

(delta) between the
releases of 2
subsaquant
iterations.

At this point, the
system is released
for production use.

Figure 19: Unified Process

25

Summary 2020-10-07

Inception

inception: initial short step to establish common vision and basic scope

not the time to detail all requirements, and create high fidelity estimates/plans: this happens
in elaboration

answering questions:

vision, business case, RoM cost estimates
buy/build?
Go/no go?

Agreement from stakeholders on vision and value?

how much UML? Probably only simple UML use case diagrams
should last ~ 1 week
artefacts should be brief and incomplete

Artefacts

[Bold means mandatory]

Vision and business case: high level goals and constraints, executive summary, business case
Use case model: functional requirements. Most use cases name, ~ 10% detailed.
Supplementary specification: architecturally significant non-functional requirements
glossary

risk list and mitigation plan

prototypes, proof of concept

iteration plan: what to do in 1st elaboration iteration

phase plan: low fidelity guess of elaboration phase duration and resources

development case: artefacts and steps for the project

You’re doing it wrong:

©® N0 0k wDhD -

more than a few weeks spent

attempted to define most requirements

expect estimates to be reliable

defined the architecture

tried to sequence the work: requirements, then architecture, then implement
you don’t have a business case/vision

you wrote all uses cases in detail

you wrote no use cases in detail

26

Summary 2020-10-07

Elaboration

elaboration: initial series of iterations for

building core architecture

resolving high-risk elements

defining most requirements

estimating overall schedule/resources

after elaboration

- core, risky software architecture is programmed/tested
- majority of requirements are discovered/stabilised
- major risks mitigated/retired

start production-quality programming and testing for a subset of requirements, before require-
ments analysis is complete

work on varying scenarios of the same use case over several iterations: gradually extend the
system to ultimately handle all functionality required

A use case or feature is
2 3 L often too complex to
complete in one short

‘ \ \ iteration.
/ Therefore, different parts

Use Case Use Case Use Case or scenarios must be
Process Sale Process Sale Process Sale allocated to different

iterations.

-

B 3

Use Case
Process Rentals
Feature:
Logging

N

Figure 20: Spreading use cases across lterations

« usually 2+ iterations of 2-6 weeks each, with a fixed end date
« produces the architectural baseline

27

Summary

2020-10-07

« test early, often, realistically

adapt based on feedback from tests, users, developers

Artefacts

domain model

design model

software architecture document
data model

use-case storyboards, Ul prototypes

You’re doing it wrong:

_.
e

O ® N o0 bk w2

more than a few months long

only has 1iteration

most requirements were defined before elaboration

risky elements/core architecture are not being addressed

not production code

considered requirements/design phase, preceding implementation
attempt to design fully before programming

minimal feedback/adaptation

no early/realistic testing

architecture is speculatively finalised, before implementation

28

	Table of Contents
	Use Cases
	Level of Detail
	Use case variants
	Actors
	Importance
	Use case Model
	Use case Diagram
	Relevance of Use cases
	Include relationship
	Extend relationship

	OO Analysis
	Domain Models
	Identifying conceptual classes
	Associations
	Attributes
	Creating a Domain Model
	Description Class

	System Sequence Diagrams
	Object-Oriented Design Models
	OO Domain Models
	OO Design Models
	Input Artefacts to OO design
	OO Software Design
	Output Artefacts of OOSD

	Static Design Models
	Comparison to Domain models

	Dynamic Design Models
	SSD vs DSD
	Lifeline Notation
	Reference frames
	Loop frames

	OO Implementation
	Translating design models to code
	Visibility
	Achieving visibility

	State Machines
	When to apply state machine diagrams?
	UML Details
	Implementation Details

	Architecture
	Software Architecture
	Architectural Analysis
	Architecturally significant functional requirements
	Architecturally significant Non-functional Requirements
	Effects of requirements on design
	Steps
	Priorities
	Architectural Factor Table
	Technical Memo

	Logical Architecture
	Layered architecture
	UML Package Diagram
	Information Systems - Typical Logical Architecture
	UML Component Diagram - Implementation View
	Architectural Improvement

	Modelling and Design in the Software Process
	Inception
	Artefacts
	You're doing it wrong:

	Elaboration
	Artefacts
	You're doing it wrong:

