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Use Cases

• use case: informally: text story of an actor using a system tomeet goals

– emphasises user goals and perspective

* who is using the system?

* what are their typical scenarios of use?

* what are their goals?

– formally: collection of related success/failure scenarios that describe an actor using the
SuD to support a goal

– primarily capture functional requirements
– define a contract of how a systemwill behave

• SuD: system under discussion
• actor: something with behaviour; e.g. person, computer system, organisation
• scenario/use case instance: specific sequence of actions/interactions between actors andSuD

Level of Detail

• brief: terse one-paragraph summary of the main success scenario
• casual: informal multi-paragraph format covering various scenarios
• fully dressed: formal writing of each step and variations in detail, with supporting material

Use case variants

• main success scenario: ideal use case; mandatory element

– “happy path”, typical flow
– usually has no conditions/branching

• alternative scenario: optional, enhances understanding, provides some alternative behaviour

– covered in Extensions section when fully dressed

Actors

• primary actor: has user goals fulfilled through using services of SuD
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• supporting actor: provides a service to SuD to clarify external interfaces/protocols

– typically a computer system (e.g. payment authorisation system) but can be an organisa-
tion or person

• offstage actor: has an interest in behaviour of the use case, but is not primary/supporting

– e.g. tax agency
– important to include to ensure all stakeholder requirements are captured

Importance

• influences design, implementation, project management
• key source of information for OO analysis/testing
• use cases should be strongly driven by project goals

Use case Model

• Use casemodel: model of system functionality/environment

– primarily: set ofwritten use cases
– optionally: includes UML use case diagram

Use case Diagram

• show primary actors on LHS
• show supporting actors on RHS
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Figure 1: Use case diagram
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Figure 2: Use case notation

Relevance of Use cases

To checkwhether use-cases are at the right level for application requirements analysis, you can apply
a number of tests.

• Boss test: your bossmust behappy if, when asking youwhat youhavebeendoing, you respond
with the use case

• Elementary business process test: a value-adding process undertaken by one person in one
location in response to a business event

• Size test: tasks shouldn’t be a single step. They shouldn’t be toomany steps.

– Fully dressed: 3-10 pages

Example:

• negotiate a supplier contract: much broader/longer than an EBP
• handle returns: OK with the boss. Seems like EBP. Good size.
• Log in: fails boss test
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• Move piece on game board: single step - fails size test.

Include relationship

• used to reduce repetition in multiple use cases
• refactor common part of use cases into subfunction use case

1 Extensions:
2
3 6b. Paying by credit: Include Handle Credit Payment.

Figure 3: Use case include relationship

Extend relationship

• used to add new extensions/conditional steps to a use case

– base case is complete without the extension
– extension relies on base case
– base case doesn’t know about extension

• extension analogous to wrapper or subclass
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• used infrequently: most often when you cannot modify the original
• where possible, modify use case text instead

Figure 4: Use case extend and include

OO Analysis

• OO analysis: creating description of domain from OO perspective

– analyse use cases and identify objects/concepts in problem domain
– concepts/behaviours captured in Domain models and Sequence diagrams
– abstract level of intention
– intended to help understand the domain

• domain models and system sequence diagrams are the primary artefacts
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Domain Models

• domainmodel: representation of real-situation conceptual classes

– not a software object
– shows noteworthy domain concepts/objects
– is an OO artefact
– focus on explaining things and products important to the particular business domain

• represented visually using UML class diagram: show conceptual classes, attributes and associ-
ations

• nomethod signatures defined
• visual dictionary of noteworthy abstractions, domain vocabulary, information content of the
domain

• should be recognisable to a non-programmer from the domain
• captures static context of system
• attribute or class?

– if X not considered a number/text in the real world, X is probably a conceptual class, not
an attribute

• don’t use attributes as foreign keys: show the association

Identifying conceptual classes

Approaches:

• noun phrase analysis: use carefully, but often suggestive
• use published category list/existing models for common domains

Associations

• association: relationship between classes indicating a meaningful/interesting connection
• include associations when

– significant in the domain
– knowledge of the relationship needs to be preserved

Attributes

• attribute: logical data value of an object
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• include when requirements suggest a need to remember information
• do not show visibility: this is a design detail

Creating a Domain Model

1. find conceptual classes
2. draw as classes in UML class diagram
3. add associations and attributes

Description Class

• description class: contains information that describes something else
• used when:

– groups of items share the same description
– items need to be described, even when there are currently no instances

Figure 5: Description class example 1
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Figure 6: Description class example 2

System Sequence Diagrams

• system sequence diagram: shows chronology of system events generated by external actors
• captures dynamic context of system
• one SSD for one scenario of a use case
• helps identify external input events to the system (i.e. system events)
• indicates events design needs to handle
• treat system as a black box: describe what it does without describing implementation details
• choose system events that don’t tie you to an implementation

– events should remain abstract: show intent, not the means
– e.g. enterItem better than scan

• all external actors (human or not) for the scenario are shown
• can show inter-system interactions, e.g. POS to external credit payment authoriser
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Figure 7: System Sequence Diagram

Object-Oriented Design Models

OO Domain Models

• Analysis: investigation of problem and requirements
• OO Software Analysis: finding and describes objects/concepts in the problem domain

OO Design Models

• Design: conceptual solution that meets the requirements of the problem
• OO Software Design: defining software objects and their collaboration

Input Artefacts to OO design

• Use case text describes functional requirements that design models must realise
• Domainmodels provide inspiration for software objects in design models
• System sequence Diagram indicates an interaction between users and system
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OO Software Design

• process of creating conceptual solution: defining software objects and their collaboration
• architecture
• interfaces: methods, data types, protocols
• assignment of responsibilities: principles and patterns

Output Artefacts of OOSD

• Static model: Design class diagram
• Dynamic model: Design sequence diagram

Static Design Models

• static design model: representation of software objects, defining class names, attributes and
method signatures

– visualised via UML class diagram, called design class diagram

Comparison to Domainmodels

• Domain model: conceptual perspective

– noteworthy concepts, attributes, associations in the domain

• Design model: implementation perspective

– roles and collaborations of software objects

• Domain models inspire design models to reduce the representational gap

– talk the same language in software and domain

Dynamic Design Models

• dynamic designmodel: representation of how software objects interact via messages

– visualised as UML Sequence diagram or UML Communication diagram
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• Design Sequence diagram: illustrates sequence/time ordering of messages between software
objects

– helpful in assigning responsibilities to software objects

SSD vs DSD

• System Sequence Diagram treats the system as a black box, focusing on interactions between
actors and the system

• Design sequence diagram illustrates behaviourswithin the system, focusing on interaction be-
tween software objects

Lifeline Notation

Figure 8: Lifeline Notation
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Reference frames

Figure 9: Reference Frames

Loop frames

Figure 10: Loop Frame
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OO Implementation

• Implementation: concrete solution that meets the requirements of the problem
• OO Software Implementation: implementation in OO languages and technologies

Translating designmodels to code

• build least-coupled classes first, as more highly coupled classes will depend on these
• use Map for key-based lookup
• use List for growing ordered list
• declare variable in terms of the interface (e.g. Map over HashMap)

Visibility

• visibility: ability of an object to see/refer to another object
• objects require visibility of each other in order to cooperate
• e.g. for A to send amessage to B, Bmust be visible to A

Achieving visibility

A can get visibility of B in 1 of 4 ways:

1. B is an attribute of A
2. B is a parameter of a method of A
3. B is a (non-parameter) local object in a method of A
4. B has global visibility

State Machines

• statemachine: behaviour model capturing dynamic behaviour of an object in terms of

– states: condition of an object at a moment in time
– event: significant/noteworthy occurrence that causes the object to change state
– transition: directed relationship between two states, such that an event can cause the
object to change states per the transition

• visualised via UML Statemachine diagram
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When to apply statemachine diagrams?

• state-dependent object: reacts differently to events depending on its state

– e.g. elevator

• state-independent object: reacts uniformly to all events

– e.g. automatic door

• state-independent w.r.t a particular event: responds uniformly to a particular event

– e.g. microwave state-independent w.r.t cancel

• Consider state machines for state-dependent objects with complex behaviour
• Domain guidance:

– business information systems: state machines are uncommon
– communications/control: state machines are more common (e.g. Berkeley socket)

UML Details

• transition action: action taken when a transition occurs

– typically represents invocation of a method

• guard: pre-condition to a transition

– if false, transition does not proceed

Figure 11: Transition actions and guards

• nested states: substates inherit transitions of the superstate
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Figure 12: Nested States

• choice pseudostates: dynamic conditional branch

– can have as many branches as needed
– can use an [else] branch to follow if no other guards are true

Figure 13: Choice Pseudostate

Implementation Details

• use an enumeration for states
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Figure 14: Implementation

1 public class IncreasingPairFinder {
2 // enum for all the states of the state machine
3 enum State { STATE1, STATE2, FINAL }
4 // initialise to start state
5 State state = State.STATE1;
6 int lastX;
7
8 // trigger
9 public void eventA(int x) {
10 if (state == State.STATE1) {
11 // action
12 lastX = x;
13 // transition
14 state = State.STATE2;
15 } else if (state == State.STATE2) {
16 // condition
17 if (x > lastX) {
18 // action
19 otherClass.doStuff(x - lastX);
20 // transition
21 state = State.STATE1;
22 }
23 }
24 }
25
26 public void eventB() {
27 if (state == State.STATE1) {
28 state = State.FINAL;
29 }
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30 }
31 }

Architecture

• Larman: Chs 13, 33

Software Architecture

• software architecture: large scale organisation of the elements in a software system
• descisions:

– structural elements: what are the components of the system?
– interfaces: what interfaces do elements expose?
– collaboration: how do the elements work together according to the business logic?
– composition: how can elements be grouped into larger subsystems?

Architectural Analysis

• architectural analysis: process of identifying factors that will influence the architecture, un-
derstand their variability and priority, and resolve them

– identify and resolve non-functional requirements in the context of functional require-
ments

– challenge: what questions to ask, weighing the trade-offs, knowing the many ways to re-
solve architecturally significant factors

• goal: reduce risk of missing critical factor in the design of a system

– focus effort on high priority requirements
– align the product with business goals

Architectural analysis identifies and analyses:

• architecturally significant requirements: are those which can have a significant impact on
the system design, especially if they are not accounted for early in the process

• variation points: variation in existing current system/requirements

– e.g. multiple tax calculator interfaces that need to be supported

• potential evolution points: speculative points of variation thatmay arise in the future, but are
not captured in existing requirements
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Architecturally significant functional requirements

• Auditing
• Licensing
• Localisation
• Mail
• Online help
• Printing
• Reporting
• Security
• Systemmanagement
• Workflow

Architecturally significant Non-functional Requirements

• Usability
• Reliability
• Performance
• Supportability

Effects of requirements on design

• the answer to the following questions significantly affects the system design
• how do reliability and fault-tolerance requirements affect the design?

– e.g. POS: for what remote services (tax calculator) will fail-over to local services be
allowed?

• how do the licensing costs of purchased subcomponents affect profitability?

– e.g. more costly database server weighed against development time

Steps

• start early in elaboration phase
• architectural factors/drivers: identify and analyse architectural factors

– architectural factors areprimarily non-functional requirements that are architecturally sig-
nificant
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– overlaps with requirements analysis
– some should have been identified during the inception phase, and are now investigated in
more detail

• architectural decisions: for each factor, analyse alternatives and create solutions, e.g.:

– remove the requirement
– custom solution
– stop the project
– hire an expert

Priorities

• inflexible constraints

– must run on Linux
– budget for 3rd party components is X
– legal compliance

• business goals

– demo for clients at tradeshow in 18 months
– competitor driven window of opportunity

• other goals

– extendible: new release every 6 months

Architectural Factor Table

• documentation recording the influence of factors, their priorities, and variability

Fields

• Factor
• Measures, quality scenarios
• Variability: current, future evolution
• Impact of factor to

– stakeholders
– architecture
– other factors

• Priority for success
• Risk
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Technical Memo

• records alternative solutions, decisions, influential factors, and motivations for noteworthy is-
sues/decisions

Contents

• Issue
• Solution summary
• Factors
• Solution
• Motivation
• Unresolved Issues
• Alternatives Considered

Logical Architecture

• logical architecture: large-scale organisation of software classes into packages, subsystems
and layers

• deployment architecture: mapping of system onto physical devices, networks, operating sys-
tems, etc.

– not a part of logical architecture

Layered architecture

• layers: coarse-grained grouping of classes, packages, or subsystems that has cohesive respon-
sibility for a major aspect of the system

– very common
– vertical division of a system into subsystems

• e.g.

– UI
– application logic/domain objects
– technical services: general purpose objects/subsystems e.g. interfaces with DB

• strict layered architecture: each layer only calls upon the services of the layer directly below
it

– common in network protocol stacks
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• relaxed layered architecture: higher layer calls upon several lower layers

– common in information systems

• partitions: horizontal division of parallel subsystems within a layer
• benefits:

– prevent high coupling: changes don’t ripple through entire system, and hard to divide
work

– promote reuse: application logic is distinct from UI
– ability to change underlying technical services

UML Package Diagram

Figure 15: Layers and Partitions
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Information Systems - Typical Logical Architecture

Figure 16: IS Logical Architecture

UML Component Diagram - Implementation View

• component: modular part of a system that encapsulates its contents, and is replaceablewithin
its environment

– can be a class, but can also be external resources (e.g. DB) and services

• component diagram: show how to implement software system at a high level

– initial architectural landscape of the system
– defines behaviour: provided/required interfaces
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Figure 17: UML Components

Figure 18: UML Components 2

Architectural Improvement

Strategies Options that might be considered: buy, build, modify

• Buy: Use COTS

– pros: short development time, low starting cost
– cons: business differences, control over software, long term cost
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• Build: build a new system from the ground up

– pros: built-for-purpose for current needs
– cons: high cost, long timeline, high risk for transition

• Modify: modify existing solution

– pros: simpler transition, control of software
– cons: cost and delay tradeoff

• Challenge: planning and executing an acceptable path

Handling issues: some ideas

• responsiveness: host system locally, reduce Internet communications
• reliability: update networking
• modifiability: remove old/redundant systems
• functionality: add high priority, low complexity features

Modelling and Design in the Software Process

• Larman: Chs 4, 8, 12, 14
• Unified Process: iterative/incremental software development

Figure 19: Unified Process
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Inception

• inception: initial short step to establish common vision and basic scope
• not the time to detail all requirements, and create high fidelity estimates/plans: this happens
in elaboration

• answering questions:

– vision, business case, RoM cost estimates
– buy/build?
– Go/no go?
– Agreement from stakeholders on vision and value?

• howmuch UML? Probably only simple UML use case diagrams
• should last ~ 1 week
• artefacts should be brief and incomplete

Artefacts

[Bold means mandatory]

• Vision and business case: high level goals and constraints, executive summary, business case
• Use casemodel: functional requirements. Most use cases name, ~ 10% detailed.
• Supplementary specification: architecturally significant non-functional requirements
• glossary
• risk list andmitigation plan
• prototypes, proof of concept
• iteration plan: what to do in 1st elaboration iteration
• phase plan: low fidelity guess of elaboration phase duration and resources
• development case: artefacts and steps for the project

You’re doing it wrong:

1. more than a few weeks spent
2. attempted to define most requirements
3. expect estimates to be reliable
4. defined the architecture
5. tried to sequence the work: requirements, then architecture, then implement
6. you don’t have a business case/vision
7. you wrote all uses cases in detail
8. you wrote no use cases in detail
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Elaboration

• elaboration: initial series of iterations for

– building core architecture
– resolving high-risk elements
– defining most requirements
– estimating overall schedule/resources

• after elaboration

– core, risky software architecture is programmed/tested
– majority of requirements are discovered/stabilised
– major risks mitigated/retired

• start production-quality programming and testing for a subset of requirements, before require-
ments analysis is complete

• work on varying scenarios of the same use case over several iterations: gradually extend the
system to ultimately handle all functionality required

Figure 20: Spreading use cases across Iterations

• usually 2+ iterations of 2-6 weeks each, with a fixed end date
• produces the architectural baseline
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• test early, often, realistically
• adapt based on feedback from tests, users, developers

Artefacts

• domain model
• design model
• software architecture document
• data model
• use-case storyboards, UI prototypes

You’re doing it wrong:

1. more than a fewmonths long
2. only has 1 iteration
3. most requirements were defined before elaboration
4. risky elements/core architecture are not being addressed
5. not production code
6. considered requirements/design phase, preceding implementation
7. attempt to design fully before programming
8. minimal feedback/adaptation
9. no early/realistic testing
10. architecture is speculatively finalised, before implementation
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