
Summary 2020-10-07

Table of Contents

Use Cases

• use case: informally: text story of an actor using a system tomeet goals

– emphasises user goals and perspective

* who is using the system?

* what are their typical scenarios of use?

* what are their goals?

– formally: collection of related success/failure scenarios that describe an actor using the
SuD to support a goal

– primarily capture functional requirements
– define a contract of how a systemwill behave

• SuD: system under discussion
• actor: something with behaviour; e.g. person, computer system, organisation
• scenario/use case instance: specific sequence of actions/interactions between actors andSuD

Level of Detail

• brief: terse one-paragraph summary of the main success scenario
• casual: informal multi-paragraph format covering various scenarios
• fully dressed: formal writing of each step and variations in detail, with supporting material

Use case variants

• main success scenario: ideal use case; mandatory element

– “happy path”, typical flow
– usually has no conditions/branching

• alternative scenario: optional, enhances understanding, provides some alternative behaviour

– covered in Extensions section when fully dressed

Actors

• primary actor: has user goals fulfilled through using services of SuD

1



Summary 2020-10-07

• supporting actor: provides a service to SuD to clarify external interfaces/protocols

– typically a computer system (e.g. payment authorisation system) but can be an organisa-
tion or person

• offstage actor: has an interest in behaviour of the use case, but is not primary/supporting

– e.g. tax agency
– important to include to ensure all stakeholder requirements are captured

Importance

• influences design, implementation, project management
• key source of information for OO analysis/testing
• use cases should be strongly driven by project goals

Use case Model

• Use casemodel: model of system functionality/environment

– primarily: set ofwritten use cases
– optionally: includes UML use case diagram

Use case Diagram

• show primary actors on LHS
• show supporting actors on RHS

2



Summary 2020-10-07

Figure 1: Use case diagram

3



Summary 2020-10-07

Figure 2: Use case notation

Relevance of Use cases

To checkwhether use-cases are at the right level for application requirements analysis, you can apply
a number of tests.

• Boss test: your bossmust behappy if, when asking youwhat youhavebeendoing, you respond
with the use case

• Elementary business process test: a value-adding process undertaken by one person in one
location in response to a business event

• Size test: tasks shouldn’t be a single step. They shouldn’t be toomany steps.

– Fully dressed: 3-10 pages

Example:

• negotiate a supplier contract: much broader/longer than an EBP
• handle returns: OK with the boss. Seems like EBP. Good size.
• Log in: fails boss test

4



Summary 2020-10-07

• Move piece on game board: single step - fails size test.

Include relationship

• used to reduce repetition in multiple use cases
• refactor common part of use cases into subfunction use case

1 Extensions:
2
3 6b. Paying by credit: Include Handle Credit Payment.

Figure 3: Use case include relationship

Extend relationship

• used to add new extensions/conditional steps to a use case

– base case is complete without the extension
– extension relies on base case
– base case doesn’t know about extension

• extension analogous to wrapper or subclass

5



Summary 2020-10-07

• used infrequently: most often when you cannot modify the original
• where possible, modify use case text instead

Figure 4: Use case extend and include

OO Analysis

• OO analysis: creating description of domain from OO perspective

– analyse use cases and identify objects/concepts in problem domain
– concepts/behaviours captured in Domain models and Sequence diagrams
– abstract level of intention
– intended to help understand the domain

• domain models and system sequence diagrams are the primary artefacts

6



Summary 2020-10-07

Domain Models

• domainmodel: representation of real-situation conceptual classes

– not a software object
– shows noteworthy domain concepts/objects
– is an OO artefact
– focus on explaining things and products important to the particular business domain

• represented visually using UML class diagram: show conceptual classes, attributes and associ-
ations

• nomethod signatures defined
• visual dictionary of noteworthy abstractions, domain vocabulary, information content of the
domain

• should be recognisable to a non-programmer from the domain
• captures static context of system
• attribute or class?

– if X not considered a number/text in the real world, X is probably a conceptual class, not
an attribute

• don’t use attributes as foreign keys: show the association

Identifying conceptual classes

Approaches:

• noun phrase analysis: use carefully, but often suggestive
• use published category list/existing models for common domains

Associations

• association: relationship between classes indicating a meaningful/interesting connection
• include associations when

– significant in the domain
– knowledge of the relationship needs to be preserved

Attributes

• attribute: logical data value of an object

7



Summary 2020-10-07

• include when requirements suggest a need to remember information
• do not show visibility: this is a design detail

Creating a Domain Model

1. find conceptual classes
2. draw as classes in UML class diagram
3. add associations and attributes

Description Class

• description class: contains information that describes something else
• used when:

– groups of items share the same description
– items need to be described, even when there are currently no instances

Figure 5: Description class example 1

8



Summary 2020-10-07

Figure 6: Description class example 2

System Sequence Diagrams

• system sequence diagram: shows chronology of system events generated by external actors
• captures dynamic context of system
• one SSD for one scenario of a use case
• helps identify external input events to the system (i.e. system events)
• indicates events design needs to handle
• treat system as a black box: describe what it does without describing implementation details
• choose system events that don’t tie you to an implementation

– events should remain abstract: show intent, not the means
– e.g. enterItem better than scan

• all external actors (human or not) for the scenario are shown
• can show inter-system interactions, e.g. POS to external credit payment authoriser

9



Summary 2020-10-07

Figure 7: System Sequence Diagram

Object-Oriented Design Models

OO Domain Models

• Analysis: investigation of problem and requirements
• OO Software Analysis: finding and describes objects/concepts in the problem domain

OO Design Models

• Design: conceptual solution that meets the requirements of the problem
• OO Software Design: defining software objects and their collaboration

Input Artefacts to OO design

• Use case text describes functional requirements that design models must realise
• Domainmodels provide inspiration for software objects in design models
• System sequence Diagram indicates an interaction between users and system

10



Summary 2020-10-07

OO Software Design

• process of creating conceptual solution: defining software objects and their collaboration
• architecture
• interfaces: methods, data types, protocols
• assignment of responsibilities: principles and patterns

Output Artefacts of OOSD

• Static model: Design class diagram
• Dynamic model: Design sequence diagram

Static Design Models

• static design model: representation of software objects, defining class names, attributes and
method signatures

– visualised via UML class diagram, called design class diagram

Comparison to Domainmodels

• Domain model: conceptual perspective

– noteworthy concepts, attributes, associations in the domain

• Design model: implementation perspective

– roles and collaborations of software objects

• Domain models inspire design models to reduce the representational gap

– talk the same language in software and domain

Dynamic Design Models

• dynamic designmodel: representation of how software objects interact via messages

– visualised as UML Sequence diagram or UML Communication diagram

11



Summary 2020-10-07

• Design Sequence diagram: illustrates sequence/time ordering of messages between software
objects

– helpful in assigning responsibilities to software objects

SSD vs DSD

• System Sequence Diagram treats the system as a black box, focusing on interactions between
actors and the system

• Design sequence diagram illustrates behaviourswithin the system, focusing on interaction be-
tween software objects

Lifeline Notation

Figure 8: Lifeline Notation

12



Summary 2020-10-07

Reference frames

Figure 9: Reference Frames

Loop frames

Figure 10: Loop Frame

13



Summary 2020-10-07

OO Implementation

• Implementation: concrete solution that meets the requirements of the problem
• OO Software Implementation: implementation in OO languages and technologies

Translating designmodels to code

• build least-coupled classes first, as more highly coupled classes will depend on these
• use Map for key-based lookup
• use List for growing ordered list
• declare variable in terms of the interface (e.g. Map over HashMap)

Visibility

• visibility: ability of an object to see/refer to another object
• objects require visibility of each other in order to cooperate
• e.g. for A to send amessage to B, Bmust be visible to A

Achieving visibility

A can get visibility of B in 1 of 4 ways:

1. B is an attribute of A
2. B is a parameter of a method of A
3. B is a (non-parameter) local object in a method of A
4. B has global visibility

State Machines

• statemachine: behaviour model capturing dynamic behaviour of an object in terms of

– states: condition of an object at a moment in time
– event: significant/noteworthy occurrence that causes the object to change state
– transition: directed relationship between two states, such that an event can cause the
object to change states per the transition

• visualised via UML Statemachine diagram

14



Summary 2020-10-07

When to apply statemachine diagrams?

• state-dependent object: reacts differently to events depending on its state

– e.g. elevator

• state-independent object: reacts uniformly to all events

– e.g. automatic door

• state-independent w.r.t a particular event: responds uniformly to a particular event

– e.g. microwave state-independent w.r.t cancel

• Consider state machines for state-dependent objects with complex behaviour
• Domain guidance:

– business information systems: state machines are uncommon
– communications/control: state machines are more common (e.g. Berkeley socket)

UML Details

• transition action: action taken when a transition occurs

– typically represents invocation of a method

• guard: pre-condition to a transition

– if false, transition does not proceed

Figure 11: Transition actions and guards

• nested states: substates inherit transitions of the superstate

15



Summary 2020-10-07

Figure 12: Nested States

• choice pseudostates: dynamic conditional branch

– can have as many branches as needed
– can use an [else] branch to follow if no other guards are true

Figure 13: Choice Pseudostate

Implementation Details

• use an enumeration for states

16



Summary 2020-10-07

Figure 14: Implementation

1 public class IncreasingPairFinder {
2 // enum for all the states of the state machine
3 enum State { STATE1, STATE2, FINAL }
4 // initialise to start state
5 State state = State.STATE1;
6 int lastX;
7
8 // trigger
9 public void eventA(int x) {
10 if (state == State.STATE1) {
11 // action
12 lastX = x;
13 // transition
14 state = State.STATE2;
15 } else if (state == State.STATE2) {
16 // condition
17 if (x > lastX) {
18 // action
19 otherClass.doStuff(x - lastX);
20 // transition
21 state = State.STATE1;
22 }
23 }
24 }
25
26 public void eventB() {
27 if (state == State.STATE1) {
28 state = State.FINAL;
29 }

17



Summary 2020-10-07

30 }
31 }

Architecture

• Larman: Chs 13, 33

Software Architecture

• software architecture: large scale organisation of the elements in a software system
• descisions:

– structural elements: what are the components of the system?
– interfaces: what interfaces do elements expose?
– collaboration: how do the elements work together according to the business logic?
– composition: how can elements be grouped into larger subsystems?

Architectural Analysis

• architectural analysis: process of identifying factors that will influence the architecture, un-
derstand their variability and priority, and resolve them

– identify and resolve non-functional requirements in the context of functional require-
ments

– challenge: what questions to ask, weighing the trade-offs, knowing the many ways to re-
solve architecturally significant factors

• goal: reduce risk of missing critical factor in the design of a system

– focus effort on high priority requirements
– align the product with business goals

Architectural analysis identifies and analyses:

• architecturally significant requirements: are those which can have a significant impact on
the system design, especially if they are not accounted for early in the process

• variation points: variation in existing current system/requirements

– e.g. multiple tax calculator interfaces that need to be supported

• potential evolution points: speculative points of variation thatmay arise in the future, but are
not captured in existing requirements

18



Summary 2020-10-07

Architecturally significant functional requirements

• Auditing
• Licensing
• Localisation
• Mail
• Online help
• Printing
• Reporting
• Security
• Systemmanagement
• Workflow

Architecturally significant Non-functional Requirements

• Usability
• Reliability
• Performance
• Supportability

Effects of requirements on design

• the answer to the following questions significantly affects the system design
• how do reliability and fault-tolerance requirements affect the design?

– e.g. POS: for what remote services (tax calculator) will fail-over to local services be
allowed?

• how do the licensing costs of purchased subcomponents affect profitability?

– e.g. more costly database server weighed against development time

Steps

• start early in elaboration phase
• architectural factors/drivers: identify and analyse architectural factors

– architectural factors areprimarily non-functional requirements that are architecturally sig-
nificant

19



Summary 2020-10-07

– overlaps with requirements analysis
– some should have been identified during the inception phase, and are now investigated in
more detail

• architectural decisions: for each factor, analyse alternatives and create solutions, e.g.:

– remove the requirement
– custom solution
– stop the project
– hire an expert

Priorities

• inflexible constraints

– must run on Linux
– budget for 3rd party components is X
– legal compliance

• business goals

– demo for clients at tradeshow in 18 months
– competitor driven window of opportunity

• other goals

– extendible: new release every 6 months

Architectural Factor Table

• documentation recording the influence of factors, their priorities, and variability

Fields

• Factor
• Measures, quality scenarios
• Variability: current, future evolution
• Impact of factor to

– stakeholders
– architecture
– other factors

• Priority for success
• Risk

20



Summary 2020-10-07

Technical Memo

• records alternative solutions, decisions, influential factors, and motivations for noteworthy is-
sues/decisions

Contents

• Issue
• Solution summary
• Factors
• Solution
• Motivation
• Unresolved Issues
• Alternatives Considered

Logical Architecture

• logical architecture: large-scale organisation of software classes into packages, subsystems
and layers

• deployment architecture: mapping of system onto physical devices, networks, operating sys-
tems, etc.

– not a part of logical architecture

Layered architecture

• layers: coarse-grained grouping of classes, packages, or subsystems that has cohesive respon-
sibility for a major aspect of the system

– very common
– vertical division of a system into subsystems

• e.g.

– UI
– application logic/domain objects
– technical services: general purpose objects/subsystems e.g. interfaces with DB

• strict layered architecture: each layer only calls upon the services of the layer directly below
it

– common in network protocol stacks

21



Summary 2020-10-07

• relaxed layered architecture: higher layer calls upon several lower layers

– common in information systems

• partitions: horizontal division of parallel subsystems within a layer
• benefits:

– prevent high coupling: changes don’t ripple through entire system, and hard to divide
work

– promote reuse: application logic is distinct from UI
– ability to change underlying technical services

UML Package Diagram

Figure 15: Layers and Partitions

22



Summary 2020-10-07

Information Systems - Typical Logical Architecture

Figure 16: IS Logical Architecture

UML Component Diagram - Implementation View

• component: modular part of a system that encapsulates its contents, and is replaceablewithin
its environment

– can be a class, but can also be external resources (e.g. DB) and services

• component diagram: show how to implement software system at a high level

– initial architectural landscape of the system
– defines behaviour: provided/required interfaces

23



Summary 2020-10-07

Figure 17: UML Components

Figure 18: UML Components 2

Architectural Improvement

Strategies Options that might be considered: buy, build, modify

• Buy: Use COTS

– pros: short development time, low starting cost
– cons: business differences, control over software, long term cost

24



Summary 2020-10-07

• Build: build a new system from the ground up

– pros: built-for-purpose for current needs
– cons: high cost, long timeline, high risk for transition

• Modify: modify existing solution

– pros: simpler transition, control of software
– cons: cost and delay tradeoff

• Challenge: planning and executing an acceptable path

Handling issues: some ideas

• responsiveness: host system locally, reduce Internet communications
• reliability: update networking
• modifiability: remove old/redundant systems
• functionality: add high priority, low complexity features

Modelling and Design in the Software Process

• Larman: Chs 4, 8, 12, 14
• Unified Process: iterative/incremental software development

Figure 19: Unified Process

25



Summary 2020-10-07

Inception

• inception: initial short step to establish common vision and basic scope
• not the time to detail all requirements, and create high fidelity estimates/plans: this happens
in elaboration

• answering questions:

– vision, business case, RoM cost estimates
– buy/build?
– Go/no go?
– Agreement from stakeholders on vision and value?

• howmuch UML? Probably only simple UML use case diagrams
• should last ~ 1 week
• artefacts should be brief and incomplete

Artefacts

[Bold means mandatory]

• Vision and business case: high level goals and constraints, executive summary, business case
• Use casemodel: functional requirements. Most use cases name, ~ 10% detailed.
• Supplementary specification: architecturally significant non-functional requirements
• glossary
• risk list andmitigation plan
• prototypes, proof of concept
• iteration plan: what to do in 1st elaboration iteration
• phase plan: low fidelity guess of elaboration phase duration and resources
• development case: artefacts and steps for the project

You’re doing it wrong:

1. more than a few weeks spent
2. attempted to define most requirements
3. expect estimates to be reliable
4. defined the architecture
5. tried to sequence the work: requirements, then architecture, then implement
6. you don’t have a business case/vision
7. you wrote all uses cases in detail
8. you wrote no use cases in detail

26



Summary 2020-10-07

Elaboration

• elaboration: initial series of iterations for

– building core architecture
– resolving high-risk elements
– defining most requirements
– estimating overall schedule/resources

• after elaboration

– core, risky software architecture is programmed/tested
– majority of requirements are discovered/stabilised
– major risks mitigated/retired

• start production-quality programming and testing for a subset of requirements, before require-
ments analysis is complete

• work on varying scenarios of the same use case over several iterations: gradually extend the
system to ultimately handle all functionality required

Figure 20: Spreading use cases across Iterations

• usually 2+ iterations of 2-6 weeks each, with a fixed end date
• produces the architectural baseline

27



Summary 2020-10-07

• test early, often, realistically
• adapt based on feedback from tests, users, developers

Artefacts

• domain model
• design model
• software architecture document
• data model
• use-case storyboards, UI prototypes

You’re doing it wrong:

1. more than a fewmonths long
2. only has 1 iteration
3. most requirements were defined before elaboration
4. risky elements/core architecture are not being addressed
5. not production code
6. considered requirements/design phase, preceding implementation
7. attempt to design fully before programming
8. minimal feedback/adaptation
9. no early/realistic testing
10. architecture is speculatively finalised, before implementation

28


	Table of Contents
	Use Cases
	Level of Detail
	Use case variants
	Actors
	Importance
	Use case Model
	Use case Diagram
	Relevance of Use cases
	Include relationship
	Extend relationship

	OO Analysis
	Domain Models
	Identifying conceptual classes
	Associations
	Attributes
	Creating a Domain Model
	Description Class

	System Sequence Diagrams
	Object-Oriented Design Models
	OO Domain Models
	OO Design Models
	Input Artefacts to OO design
	OO Software Design
	Output Artefacts of OOSD

	Static Design Models
	Comparison to Domain models

	Dynamic Design Models
	SSD vs DSD
	Lifeline Notation
	Reference frames
	Loop frames

	OO Implementation
	Translating design models to code
	Visibility
	Achieving visibility

	State Machines
	When to apply state machine diagrams?
	UML Details
	Implementation Details

	Architecture
	Software Architecture
	Architectural Analysis
	Architecturally significant functional requirements
	Architecturally significant Non-functional Requirements
	Effects of requirements on design
	Steps
	Priorities
	Architectural Factor Table
	Technical Memo

	Logical Architecture
	Layered architecture
	UML Package Diagram
	Information Systems - Typical Logical Architecture
	UML Component Diagram - Implementation View
	Architectural Improvement


	Modelling and Design in the Software Process
	Inception
	Artefacts
	You're doing it wrong:

	Elaboration
	Artefacts
	You're doing it wrong:



