
GRASP 2020-10-07

GRASP

Table of Contents

• GRASP: Overview and Interrelationship
• Responsibilities
• Creator
• Information Expert
• Low Coupling
• High Cohesion
• Controller
• Polymorphism
• Pure Fabrication
• Indirection
• Protected Variations

– Liskov Substitution Principle
– Don’t talk to strangers

GRASP: Overview and Interrelationship

• General Responsibility Assignment Software Patterns
• pattern: named and well-known problem and solution that can be applied to new contexts,
providing guidance for assessing trade-offs

1

GRASP 2020-10-07

Figure 1: Relationship between grasp principles

Benefits of patterns

• capture expertise in an accessible, standardisedmanner
• facilitate reuse of applying expertise
• improve understandability and communication, by operating in a common language
• inspiration for new solutions based onmodifying existing patterns

Responsibilities

• responsibility: contract/obligation

• types of responsibility:

– doing: an object could

* do something itself, e.g. create an object, perform a calculation

* initiate action in other objects

* control/coordinate activities in other objects

– knowing: an object could

* know about private encapsulated data

* know about related objects

* know about things it can derive/calculate

2

GRASP 2020-10-07

• low representational gap: domain model can be used to inspire knowing responsibilities

• granularity: big responsibilities may take hundreds of classes/methods, while small ones may
take a single method

• responsibilities are distinct frommethods: responsibilities are an abstraction, but methods ful-
fill responsibilities

• collaboration: responsibiilities may involve multiple objects working together to fulfill a re-
sponsibility

• Responsibility Driven Design: way to think about assigning responsibilities in OO software
design, where the design comprises a community of collaborating responsible objects

Creator

Problem: who should be responsible for object creation?

Solution: Assign class B responsibility to create class A if: - B contains/aggregates A - B records A - B
closely uses A - B has initialising data for A

Themore of these that hold, the stronger the implication.

Benefits: Low coupling

Contraindications: - complex object creation, e.g. from a family of classes. Instead delegate to Fac-
tory

Information Expert

Problem: How to decide which class to assign a responsibility to?

Solution: - Assign X the responsibility if X has the necessary information

Benefits: classes are - understandable - maintainable - extendible

Contraindications: - the solution suggested by Information Expertmay introduce problemswith cou-
pling and cohesion

Low Coupling

Problem: how to support low dependency, low change impact, and increased reuse?

Solution: - assign responsibilities such that coupling remains low. - use this to differentiate alterna-
tives - coupling: degree of connection to other elements (whether knowledge/reliance on)

3

GRASP 2020-10-07

Benefits: code becomes - maintainable - efficient - reusable

Contraindications: - high coupling can be okay with stable code, e.g. standard libraries

High Cohesion

Problem: How to keep objects focused, understandable, manageable, while suppporting low cou-
pling? - functional cohesion: how strongly related and focused the responsibilities of an element
are - low cohesion: class performs too many unrelated tasks. Code is hard to comprehend, reuse,
maintain

Solution: - choose between alternatives by assigning the reponsibility to X for maximum cohesion

Benefits: code becomes - easy to comprehend - maintainable - reusable

Contraindications: - non-functional requirements may require low cohesion, e.g. reduce processing
overheads in high- performance computing

Controller

Problem: What first object beyond the UI layer receives and coordinates (i.e. controls) system opera-
tion?

Solution: - facade controller: assign responsibility to a class representing the overall system - use
case/session controller: assign responsibility to a class representing a use case scenario that deals
with the event, named something like <UseCaseName><Handler|Coordinator|Session>

Benefits: prevent coupling between UI and application logic

Issues: - bloated controller: controllers with toomany responsibilities (low cohesion) - break facade
controller into multiple use case controllers - delegate work to other objects: only handle control in
the controller itself

Polymorphism

Problem: - how to handle alternatives based on type (class)? - conditional variation using switch-
case statements requires heavy modification when new alternatives are added - how to create plug-
gable software components? - viewing components in a client-server relationship, how can you re-
place a server component without affecting the client?

Solution: when related alternatives/behaviours vary by type (class), assign responibility for the be-
haviour using polymorphic operations to the types (classes) for which the behaviour varies. - i.e. give

4

GRASP 2020-10-07

the same name to services in different objects - i.e. inheritance with generalisation/specialisation, or
interfaces

Corollary: avoid testing the type of an object as part of conditional logic to perform varying alterna-
tives based on type (class).

Guideline: unless there is a default behaviour in the superclass, declare a polymorphic operation in
the superclass to be abstract.

Guideline: when should you consider using an interface?
- introduce one when you want to support polymorphism without being committed to a class hierar-
chy

Benefits: - easy extension of code: you can introduce new implementations without affecting
clients

Contraindications: - avoid premature optimisation: consider future proofingwith respect to realistic
likelihood of variability before investing time in increased flexibility.

Pure Fabrication

Problem: what object should have a responsibility, where you don’t want to violate high cohe-
sion/low coupling, etc., but guidance from Expert etc. is not appropriate?

Solution: assignahighly cohesive setof responsibilities toanartificial/convenienceclass thatdoesn’t
exist in the problem domain.

Benefits: - high cohesion - reuse potential

Contraindications: - overuse where each class is basically a single function: produces high coupling
and lots of message passing

Indirection

Problem: - where to assign responsibility to avoid direct coupling between 2+ things? - how to decou-
ple to support low coupling and reuse potential?

Solution: - assign responsibility to an intermediary, creating indirection between components -
e.g. Adapter to protect inner design against external variation - “Most problems in computer science
can be solved by another layer of indirection”

Benefits: - reduced coupling

Contraindications: - high performance may need to reduce amount of indirection - “Most problems
in performance can be solved by removing another layer of indirection”

5

GRASP 2020-10-07

Protected Variations

Problem: How to design objects/systems so that variation in these elements doesn’t impact other
elements?

Solution: - identify points of predicted variation/instability - assign responsibilities to create a stable
interface (in the broad sense of an access view) around them - points of change: - variation point:
variation in existing system/requirements - evolution point: speculative variations that may arise in
the future - equivalent to Open-Closed principle: objects should be open for extension, and closed
to modification that affects clients - equivalent to Information Hiding

Benefits: - extensible - new implementations don’t affect clients - low coupling - low cost of change

Contraindications: - cost of future-proofing can outweigh benefits - reworking a brittle design as
neededmay be easier

Guidance: - novice developers produce brittle designs - intermediate developers produce overly fan-
cy/flexible, generaliseddesigns that never get used - expert developers choosewith insight, balancing
the cost of changing a simple/brittle design against its likelihood

Liskov Substitution Principle

• software (methods, classes,…) referring to a typeT (interface, abstract superclass) shouldwork
properly with any substituted implementation or subclass of T

Don’t talk to strangers

Avoid creating designs that traverse long object structure paths and/or sendmessages to distant, indi-
rect (stranger) objects. doing somakes designs fragile with respect to changes in object structures.

Within a method, messages should only be passed to:

1. this object (self)
2. parameter of the method
3. attribute of this, (or element of collection that is an attribute of this)
4. object created in the method

Intent:: avoid coupling between client and knowledge of indirect objects, and connections between
objects.

1 public void doX() {
2 // avoid this
3 F someF = foo.getA().getB().getC().getD().getE().getF();

6

GRASP 2020-10-07

4 // this is better
5 F someF = foo.getFfromFoo();
6 }

Guideline: The farther along a path one traverses, the more fragile it will be. Instead add a public
operation to direct objects that hides how the information is obtained.

7

	GRASP
	Table of Contents
	GRASP: Overview and Interrelationship
	Benefits of patterns

	Responsibilities
	Creator
	Information Expert
	Low Coupling
	High Cohesion
	Controller
	Polymorphism
	Pure Fabrication
	Indirection
	Protected Variations
	Liskov Substitution Principle
	Don't talk to strangers

