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Modelling System Dynamics with Graphs

a weighted digraph can be represented as an adjacency matrix

classical deterministic systems can be modelled without weights (i.e. all weights are 0 or 1)

classical probabilistic systems can be modelled with real weights

quantum systems can be modelled with complex weights

Classical Deterministic Systems

+ e.g. marbles moving between vertices

« the states of a system correspond to column vectors (state vectors) x

+ dynamics of a system as a digraph with weight whose weights are in 0, 1 have corresponding
matrix M

+ the progression from one state to another in one time step, multiply the state vector by a matrix
Mx

« multiple step dynamics are obtained via matrix multiplication M*x

Classical Probabilistic Systems

+ in quantum mechanics

- thereisinherent indeterminacy in our knowledge of a physical state
- states change according to probabilistic laws: the laws governing a system’s evolution are
given by describing how states transition from one to another with a certain likelihood

Adjacency Matrix

e.g. marbles moving between vertices with some probability

to capture probabilistic scenarios, the state of the system corresponds to the probability e.g. of
a marble being on a vertex

weights therefore are real-valued numbers between 0 and 1
+ correspondingadjacency matrix is doubly stochastic: sum of each row and sum of each column
is1

Time Symmetry

« row vector w also corresponds to a state of the system
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-wM =1z

« the transpose of M, M7 corresponds to the original digraph with reversed arrows

« thisis akin to travelling back in time

« left multiplication of M takes states from timettot + 1

+ right multiplication of M takes states fromtimettot — 1

+ time symmetry of quantum mechanics is important

+ system dynamics are entirely symmetric: replacing column vectors with row vectors, and for-
ward evolution with backward evolution, the laws of dynamics still hold

Summary

the vectors representing states of a probabilistic system express indeterminacy about the exact
physical state

matrices representing dynamics express indeterminacy about how the system will change over
time

the matrix entries allow calculation of likelihood of transitioning from one state to the next
+ the progression of the system is simulated by matrix multiplication

Quantum Systems
Interference

« in quantum systems, a weight is represented by a normalised complex number ¢, such that |c|?
is a real number between 0 and 1.

« what is the difference between using real probabilities directly and indirect probabilities (via
complex numbers)? interference

real number probabilities can only increase when added

e.g.p1,py € [0,1]: (py +p2) = 1 A (P +P2) 21y
complex numbers can cancel each other out and lower their probability

e.g.c;, ¢y € C. |c; + co]? is not necessarily bigger than |c, |2, |c,|?

Adjacency Matrix

+ in quantum realm, graphs are represented by matrices with complex entries
« rather than doubly stochastic, adjacency matrices are unitary, i.e. SUMU =1=UUAtS$
« the element-wise squared modulus of a unitary matrix is doubly stochastic
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- i.e.if U isunitary with elements u, ;, then the matrixwithelements|uij|2isdoublystochas-

159
tic
+ from the graph-theory perspective, if U is the unitary matrix taking a state fromt to ¢ + 1, then
UT is the matrix taking a state fromtto¢ — 1

+ consider the following sequence of operations:

voUv—=UUv—Iv=y

« you get the identity matrix: in graph terms this means “stay where you are”. U’ undoes the
action of U, leaving you with probability 1 where you started

Double Slit

« probability of measuring photon at centrepoint classically: non-zero

« interference on the wall at the centrepoint of slits: 0 probability of photon at this location, even
if the experiment was conducted with a single photon

« this suggests interpretation of the state vector as representing the probabilities of the photon
being at a particular state is inadequate

+ to have some state vector suggests that the photon is in all states simultaneously: the photon
passes through both slits simultaneously, and when it does so it can cancel itself out

« photon is in a superposition of states

« the reason we see particles in one position is because we have performed a measurement

+ new definition of state: a system is in state x if after measuring it, it will be found in position i
with probability |c;|?

« superposition of states is the power behind quantum computing: while classical computers are
in a single state at any moment, consider putting a computer in all states at once - lots of parallel
processing

- only possible in the quantum realm

Summary

« statesin a quantum system are represented by column vectors of complex numbers whose sum
of moduli squared is 1

« thedynamics of quantum systems s represented by unitary matrices, and is therefore reversible

+ undoing is obtained via algebraic inverse: the adjoint of the unitary matrix which represents
forward evolution




Classical to Quantum 2020-12-05

« probabilities of quantum mechanics are given as the modulus square of complex numbers
« quantum states can be superposed: a physical system can be in more than one basic state si-
multaneously

Assembling Systems

« consider composite classical probabilistic systems, with results applicable to quantum systems
+ composite systems: e.g. red marble follows graph G 1, and blue marble follows graph G 5, with
corresponding adjacency matrices A, B

- state for the two-marble system is the tensor product of the state vectors of each system
- dynamics for the two-marble system is the tensor product of the adjacency matrices: this
corresponds to the Cartesian product of 2 weighted digraphs

Entangled States

+ inthe quantum world there are many more possible states than just states that can be combined
from smaller ones

 entangled states are those that are not the tensor product of smaller states

« there are also many more possible actions on a combined quantum system than simply that of
the tensor product of individual system’s actions

Exponential growth

« Cartesian product of n vertex graph with p vertex graph is an np vertex graph
« if you have an n vertex graph G with m different marbles, you need to look at the graph

GM"=GxGx..G

which has n"™ vertices - if M, is the associated adjacency matrix, we will be interested in

which is an n™-by-n"™ matrix

« consider a bit as a 2-vertex graph with a marble on the 0 vertex/1 vertex
« torepresent m bits, each with a single marble, one would need a 2" vertex graph, with a 2"*-by-
2™ matrix
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+ this means exponential growth in resources needed for the number of bits under discussion
« this was the motivator for Feynman to start discussing potential of quantum computing
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