Modelling System Dynamics with Graphs

- a weighted digraph can be represented as an adjacency matrix
- classical deterministic systems can be modelled without weights (i.e. all weights are 0 or 1)
- classical probabilistic systems can be modelled with real weights
- quantum systems can be modelled with complex weights

Classical Deterministic Systems

- e.g. marbles moving between vertices
- the states of a system correspond to column vectors (state vectors) \mathbf{x}
- dynamics of a system as a digraph with weight whose weights are in 0,1 have corresponding matrix M
- the progression from one state to another in one time step, multiply the state vector by a matrix $M \mathrm{x}$
- multiple step dynamics are obtained via matrix multiplication $M^{k} \mathbf{X}$

Classical Probabilistic Systems

- in quantum mechanics
- there is inherent indeterminacy in our knowledge of a physical state
- states change according to probabilistic laws: the laws governing a system's evolution are given by describing how states transition from one to another with a certain likelihood

Adjacency Matrix

- e.g. marbles moving between vertices with some probability
- to capture probabilistic scenarios, the state of the system corresponds to the probability e.g. of a marble being on a vertex
- weights therefore are real-valued numbers between 0 and 1
- corresponding adjacency matrix is doubly stochastic: sum of each row and sum of each column is 1

Time Symmetry

- row vector \mathbf{w} also corresponds to a state of the system
- $\mathbf{w} M=\mathbf{z}$
- the transpose of M, M^{T} corresponds to the original digraph with reversed arrows
- this is akin to travelling back in time
- left multiplication of M takes states from time t to $t+1$
- right multiplication of M takes states from time t to $t-1$
- time symmetry of quantum mechanics is important
- system dynamics are entirely symmetric: replacing column vectors with row vectors, and forward evolution with backward evolution, the laws of dynamics still hold

Summary

- the vectors representing states of a probabilistic system express indeterminacy about the exact physical state
- matrices representing dynamics express indeterminacy about how the system will change over time
- the matrix entries allow calculation of likelihood of transitioning from one state to the next
- the progression of the system is simulated by matrix multiplication

Quantum Systems

Interference

- in quantum systems, a weight is represented by a normalised complex number c, such that $|c|^{2}$ is a real number between 0 and 1.
- what is the difference between using real probabilities directly and indirect probabilities (via complex numbers)? interference
- real number probabilities can only increase when added
- e.g. $p_{1}, p_{2} \in[0,1]:\left(p_{1}+p_{2}\right) \geq p_{1} \wedge\left(p_{1}+p_{2}\right) \geq p_{2}$
- complex numbers can cancel each other out and lower their probability
- e.g. $c_{1}, c_{2} \in \mathbb{C} .\left|c_{1}+c_{2}\right|^{2}$ is not necessarily bigger than $\left|c_{1}\right|^{2},\left|c_{2}\right|^{2}$

Adjacency Matrix

- in quantum realm, graphs are represented by matrices with complex entries
- rather than doubly stochastic, adjacency matrices are unitary, i.e. $\$ U^{\wedge} \dagger \mathrm{U}=\mathrm{I}=\mathrm{UU} \mathrm{U}^{\wedge} \dagger$
- the element-wise squared modulus of a unitary matrix is doubly stochastic
- i.e. if U is unitary with elements $u_{i j}$, then the matrix with elements $\left|u_{i j}\right|^{2}$ is doubly stochastic
- from the graph-theory perspective, if U is the unitary matrix taking a state from t to $t+1$, then U^{\dagger} is the matrix taking a state from t to $t-1$
- consider the following sequence of operations:

$$
\mathbf{v} \rightarrow U \mathbf{v} \rightarrow U^{\dagger} U \mathbf{v} \rightarrow I \mathbf{v}=v
$$

- you get the identity matrix: in graph terms this means "stay where you are". U^{\dagger} undoes the action of U, leaving you with probability 1 where you started

Double Slit

- probability of measuring photon at centrepoint classically: non-zero
- interference on the wall at the centrepoint of slits: 0 probability of photon at this location, even if the experiment was conducted with a single photon
- this suggests interpretation of the state vector as representing the probabilities of the photon being at a particular state is inadequate
- to have some state vector suggests that the photon is in all states simultaneously: the photon passes through both slits simultaneously, and when it does so it can cancel itself out
- photon is in a superposition of states
- the reason we see particles in one position is because we have performed a measurement
- new definition of state: a system is in state \mathbf{x} if after measuring it, it will be found in position i with probability $\left|c_{i}\right|^{2}$
- superposition of states is the power behind quantum computing: while classical computers are in a single state at any moment, consider putting a computer in all states at once - lots of parallel processing
- only possible in the quantum realm

Summary

- states in a quantum system are represented by column vectors of complex numbers whose sum of moduli squared is 1
- the dynamics of quantum systems is represented by unitary matrices, and is therefore reversible
- undoing is obtained via algebraic inverse: the adjoint of the unitary matrix which represents forward evolution
- probabilities of quantum mechanics are given as the modulus square of complex numbers
- quantum states can be superposed: a physical system can be in more than one basic state simultaneously

Assembling Systems

- consider composite classical probabilistic systems, with results applicable to quantum systems
- composite systems: e.g. red marble follows graph G_{R}, and blue marble follows graph G_{B}, with corresponding adjacency matrices A, B
- state for the two-marble system is the tensor product of the state vectors of each system
- dynamics for the two-marble system is the tensor product of the adjacency matrices: this corresponds to the Cartesian product of 2 weighted digraphs

Entangled States

- in the quantum world there are many more possible states than just states that can be combined from smaller ones
- entangled states are those that are not the tensor product of smaller states
- there are also many more possible actions on a combined quantum system than simply that of the tensor product of individual system's actions

Exponential growth

- Cartesian product of n vertex graph with p vertex graph is an $n p$ vertex graph
- if you have an n vertex graph G with m different marbles, you need to look at the graph

$$
G^{m}=G \times G \times \ldots G
$$

which has n^{m} vertices - if M_{G} is the associated adjacency matrix, we will be interested in

$$
M_{G}^{\otimes m}=M_{G} \otimes M_{G} \otimes \ldots \otimes M_{G}
$$

which is an n^{m}-by- n^{m} matrix

- consider a bit as a 2-vertex graph with a marble on the 0 vertex/1 vertex
- to represent m bits, each with a single marble, one would need a 2^{m} vertex graph, with a 2^{m}-by2^{m} matrix
- this means exponential growth in resources needed for the number of bits under discussion
- this was the motivator for Feynman to start discussing potential of quantum computing

