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Modelling System Dynamics with Graphs

• a weighted digraph can be represented as an adjacency matrix
• classical deterministic systems can bemodelled without weights (i.e. all weights are 0 or 1)
• classical probabilistic systems can bemodelled with real weights
• quantum systems can bemodelled with complex weights

Classical Deterministic Systems

• e.g. marbles moving between vertices
• the states of a system correspond to column vectors (state vectors) x
• dynamics of a system as a digraph with weight whose weights are in 0, 1 have corresponding
matrix 𝑀

• the progression fromone state to another in one time step,multiply the state vector by amatrix
𝑀x

• multiple step dynamics are obtained via matrix multiplication 𝑀𝑘x

Classical Probabilistic Systems

• in quantummechanics

– there is inherent indeterminacy in our knowledge of a physical state
– states changeaccording toprobabilistic laws: the laws governing a system’s evolution are
given by describing how states transition from one to another with a certain likelihood

Adjacency Matrix

• e.g. marbles moving between vertices with some probability
• to capture probabilistic scenarios, the state of the system corresponds to the probability e.g. of
a marble being on a vertex

• weights therefore are real-valued numbers between 0 and 1
• correspondingadjacencymatrix isdoublystochastic: sumofeach rowandsumofeachcolumn
is 1

Time Symmetry

• row vector w also corresponds to a state of the system
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– w𝑀 = z

• the transpose of 𝑀 , 𝑀𝑇 corresponds to the original digraph with reversed arrows
• this is akin to travelling back in time
• leftmultiplication of 𝑀 takes states from time 𝑡 to 𝑡 + 1
• right multiplication of 𝑀 takes states from time 𝑡 to 𝑡 − 1
• time symmetry of quantummechanics is important
• system dynamics are entirely symmetric: replacing column vectors with row vectors, and for-
ward evolution with backward evolution, the laws of dynamics still hold

Summary

• the vectors representing states of a probabilistic system express indeterminacy about the exact
physical state

• matrices representing dynamics express indeterminacy about how the systemwill change over
time

• the matrix entries allow calculation of likelihood of transitioning from one state to the next
• the progression of the system is simulated by matrix multiplication

Quantum Systems

Interference

• in quantum systems, a weight is represented by a normalised complex number 𝑐, such that |𝑐|2
is a real number between 0 and 1.

• what is the difference between using real probabilities directly and indirect probabilities (via
complex numbers)? interference

– real number probabilities can only increase when added
– e.g. 𝑝1, 𝑝2 ∈ [0, 1] ∶ (𝑝1 + 𝑝2) ≥ 𝑝1 ∧ (𝑝1 + 𝑝2) ≥ 𝑝2
– complex numbers can cancel each other out and lower their probability
– e.g. 𝑐1, 𝑐2 ∈ ℂ. |𝑐1 + 𝑐2|2 is not necessarily bigger than |𝑐1|2, |𝑐2|2

Adjacency Matrix

• in quantum realm, graphs are represented bymatrices with complex entries
• rather than doubly stochastic, adjacency matrices are unitary, i.e. $U^†U = I = UU^†$
• the element-wise squaredmodulus of a unitary matrix is doubly stochastic
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– i.e. if𝑈 is unitarywith elements𝑢𝑖𝑗, then thematrixwith elements |𝑢𝑖𝑗|2 is doubly stochas-
tic

• from the graph-theory perspective, if 𝑈 is the unitary matrix taking a state from 𝑡 to 𝑡 + 1, then
𝑈† is the matrix taking a state from 𝑡 to 𝑡 − 1

• consider the following sequence of operations:

v → 𝑈v → 𝑈†𝑈v → 𝐼v = 𝑣

• you get the identity matrix: in graph terms this means “stay where you are”. 𝑈† undoes the
action of 𝑈 , leaving you with probability 1 where you started

Double Slit

• probability of measuring photon at centrepoint classically: non-zero
• interference on thewall at the centrepoint of slits: 0 probability of photon at this location, even
if the experiment was conducted with a single photon

• this suggests interpretation of the state vector as representing the probabilities of the photon
being at a particular state is inadequate

• to have some state vector suggests that the photon is in all states simultaneously: the photon
passes through both slits simultaneously, and when it does so it can cancel itself out

• photon is in a superposition of states
• the reason we see particles in one position is because we have performed ameasurement
• new definition of state: a system is in state x if after measuring it, it will be found in position 𝑖
with probability |𝑐𝑖|2

• superposition of states is the power behind quantum computing: while classical computers are
in a single state at anymoment, consider putting a computer in all states at once - lots of parallel
processing

– only possible in the quantum realm

Summary

• states in a quantum systemare represented by column vectors of complex numberswhose sum
of moduli squared is 1

• thedynamicsofquantumsystems is representedbyunitarymatrices, and is therefore reversible
• undoing is obtained via algebraic inverse: the adjoint of the unitary matrix which represents
forward evolution
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• probabilities of quantummechanics are given as the modulus square of complex numbers
• quantum states can be superposed: a physical system can be in more than one basic state si-
multaneously

Assembling Systems

• consider composite classical probabilistic systems, with results applicable to quantum systems
• composite systems: e.g. redmarble follows graph𝐺𝑅, and bluemarble follows graph𝐺𝐵, with
corresponding adjacency matrices 𝐴, 𝐵

– state for the two-marble system is the tensor product of the state vectors of each system
– dynamics for the two-marble system is the tensor product of the adjacencymatrices: this
corresponds to the Cartesian product of 2 weighted digraphs

Entangled States

• in thequantumworld therearemanymorepossible states than just states that canbecombined
from smaller ones

• entangled states are those that are not the tensor product of smaller states
• there are alsomanymore possible actions on a combined quantum system than simply that of
the tensor product of individual system’s actions

Exponential growth

• Cartesian product of 𝑛 vertex graph with 𝑝 vertex graph is an 𝑛𝑝 vertex graph
• if you have an 𝑛 vertex graph G with 𝑚 different marbles, you need to look at the graph

𝐺𝑚 = 𝐺 × 𝐺 × ...𝐺

which has 𝑛𝑚 vertices - if 𝑀𝐺 is the associated adjacency matrix, we will be interested in

𝑀⊗𝑚
𝐺 = 𝑀𝐺 ⊗ 𝑀𝐺 ⊗ ... ⊗ 𝑀𝐺

which is an 𝑛𝑚-by-𝑛𝑚 matrix

• consider a bit as a 2-vertex graph with a marble on the 0 vertex/1 vertex
• to represent𝑚 bits, eachwith a singlemarble, onewould need a 2𝑚 vertex graph, with a 2𝑚-by-

2𝑚 matrix
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• this means exponential growth in resources needed for the number of bits under discussion
• this was the motivator for Feynman to start discussing potential of quantum computing
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