Complex Vector Spaces

- **complex vector space:** non-empty set V of vectors
 - (A) operations: addition, negation, scalar multiplication
 - (A) zero vector $\mathbf{0} \in \mathbb{V}$
- properties:
 - (A) commutative addition
 - (A) associative addition
 - (A) zero is an additive identity
 - (A) every vector has an inverse $V + (-V) = \mathbf{0}$
 - scalar multiplication has a unit: $1 \cdot V = V$
 - scalar multiplication respects complex multiplication
 - scalar multiplication distributes over addition $c \cdot (V + W) = c \cdot V + c \cdot W$
 - scalar multiplication distributes over complex addition $(c_1+c_2)\cdot V=c_1\cdot V+c_2\cdot V$
- any set with properties marked (A) is an Abelian group
- real vector space: non-empty set $\mathbb V$ of vectors
 - operations: additions, negation
 - * scalar multiplication uses $\mathbb R$ not $\mathbb C$
 - properties: analogous to complex vector space properties
- real vector space is like a complex vector space, except scalar multiplication is defined for scalars in $\mathbb{R}\subset\mathbb{C}$
 - as $\mathbb{R} \subset \mathbb{C}$, for every \mathbb{V} , $\mathbb{R} \times \mathbb{V} \subset \mathbb{C} \times \mathbb{V}$
 - for a given scalar multiplication $\cdot : \mathbb{C} \times \mathbb{V} \to \mathbb{V}$, you have: $\mathbb{R} \times \mathbb{V} \hookrightarrow \mathbb{C} \times \mathbb{V} \to \mathbb{V}$
 - every complex vector space can automatically be given a real vector space structure

Complex matrices

- e.g. $\mathbb{C}^{m \times n}$, the set of m by n matrices with complex entries is a complex vector space
- consider $A \in \mathbb{C}^{m \times n}$. Then we can perform these operations on A:
- transpose: A^T , with $A_{ij}^T = A_{ji}$
- **conjugate:** \bar{A} or A^* , with element-wise conjugation

- adjoint/dagger: $A^{\dagger} = \overline{(A^T)} = (\overline{A})^T$
- $\forall A, B \in \mathbb{C}^{m \times n}, c \in \mathbb{C}$ all 3 operations are: (let the operation be denoted x)
 - idempotent: $(A^x)^x = A$
 - respect addition: $(A + B)^x = A^x + B^x$
 - respect scalar multiplication $(c \cdot A)^x = c^x \cdot A^x$

Matrix Multiplication

• matrix multiplication is a binary operation:

$$*: \mathbb{C}^{m \times n} \times \mathbb{C}^{n \times p} \to \mathbb{C}^{m \times p}$$

- properties
 - not commutative
 - associative
 - I_n is a unit
 - distributes over addition
 - respects scalar multiplication
 - relates to transpose: $(A * B)^T = B^T * A^T$
 - respects the conjugate
 - relates to adjoint: $(A * B)^{\dagger} = B^{\dagger} * A^{\dagger}$
- complex vector space V with multiplication * satisfying these properties is a **complex algebra**
- let $A \in \mathbb{C}^{n \times n}$. For any $B \in \mathbb{C}^n$ (a complex vector), $A * B \in \mathbb{C}^n$
 - i.e. multiplication by A gives a function: $A : \mathbb{C}^n \to \mathbb{C}^n$
 - A acts on vectors to yield new vectors

Linear maps

- linear map between complex vector spaces \mathbb{V}, \mathbb{V}' is a function $f : \mathbb{V} \to \mathbb{V}'$ s.t. $\forall V, V_1, V_2 \in \mathbb{V}, c \in \mathbb{C}$
 - f respects addition: $f(V_1 + V_2) = f(V_1) + f(V_2)$
 - f respects scalar multiplication: $f(c \cdot V) = c \cdot f(V)$
- operator: linear map from a complex vector space to itself
 - if $F : \mathbb{C}^n \to \mathbb{C}^n$ is an operator on \mathbb{C} , A is an n-by-n matrix s.t. $\forall VF(V) = A * V$, then say F is **represented** by A

Isomorphism

- two complex vector spaces V, V' are **isomorphic** if there is a bijective (one-to-one + onto) linear map f : V → V'
 - call *f* an **isomorphism**
- when two vector spaces are isomorphic: the names of the elements of the vector space are renamed, but the structure of the 2 vector spaces are the same: the vector spaces are essentially the same, or the same up to isomorphism
- for complex vector spaces V, V': V is a complex subspace of V' if V ⊆ V, and operations of V are restrictions of operations of V'
- equivalently: $\mathbb V$ is a **complex subspace** of $\mathbb V'$ if $\mathbb V\subseteq\mathbb V,$ and
 - 𝒱 closed under addition and scalar multiplication

Isomorphism Example

- e.g. all matrices of the following form comprise a real subspace of $\mathbb{R}^{2 \times 2}$

$$\begin{bmatrix} x & y \\ -y & x \end{bmatrix}$$

• this subspace is isomorphic to \mathbb{C} via map $f : \mathbb{C} \to \mathbb{R}^{2 \times 2}$ defined as:

$$f(x+iy) = \begin{bmatrix} x & y \\ -y & x \end{bmatrix}$$

Basis and Dimension

- a set of vectors $\{V_0,...,V_{n-1}\}\in\mathbb{V}$ is linearly independent if

$$\mathbf{0}=c_0\cdot V_0+\ldots+c_{n-1}\cdot V_{n-1}$$

implies $c_0 = \ldots = c_{n-1} = 0$. - i.e. the only way a linear combination of the vectors can be the zero vector is if all c_i are zero - linearly independent i.e. each vector in the set cannot be expressed as a linear combination of the other vectors in the set - equivalent to saying for any non-zero vector $V \in \mathbb{V}$ there are unique coefficients $c_i \in \mathbb{C}$ s.t. V is a linear combination of these vectors multiplied by these coefficients - a set of vectors $\mathcal{B} \subseteq \mathbb{V}$ forms a **basis** of complex vector space \mathbb{V} if - every $V \in \mathbb{V}$ can be written as a linear combination of vectors from \mathcal{B} , and - \mathcal{B} is linearly independent - every basis of a vector space has the same number of vectors, its **dimension**

Change of basis

• change of basis/transition matrix: from basis \mathcal{B} to \mathcal{D} is a matrix $M_{\mathcal{D}\leftarrow\mathcal{B}}$ s.t. for any matrix \mathbb{V} :

$$V_{\mathcal{D}} = M_{\mathcal{D} \leftarrow \mathcal{B}} * V_{\mathcal{B}}$$

• i.e. the matrix gets the coefficients with respect to one basis from the coefficients with respect to another basis

Hadamard Matrix

• in \mathbb{R}^2 , the transition matrix from the canonical basis to the following basis:

$$\left\{ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \right\}$$

is the Hadamard matrix

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$$

- $H * H = I_2$, so the transition back to the canonical basis is also H
- H is commonly used for change of basis in quantum computing calculations

Inner Products and Hilbert Spaces

- inner product/dot product/scalar product on a complex vector space V is a function

$$\langle -,-\rangle = \mathbb{V}\times\mathbb{V}\to\mathbb{C}$$

- $\forall V, V_1, V_2, V_3 \in \mathbb{V}, \forall a, c \in \mathbb{C}$ the inner product has the properties
- non-degenerate:

-
$$\langle V, V \rangle \ge 0$$

- $\langle V, V \rangle = 0 \iff V = 0$ (only degenerate when it is 0)
- respects addition
 - $\langle V_1+V_2,V_3\rangle\langle V_1,V_3\rangle+\langle V_2,V_3\rangle\geq 0$, and vice versa

• respects scalar multiplication

-
$$\langle c \cdot V_1, V_2 \rangle = c \cdot \langle V_1, V_2 \rangle$$
, and vice versa

• skew symmetric

- $\langle V_1, V_2 \rangle = \overline{\langle V_2, V_1 \rangle}$, and vice versa

- a complex inner product space $\mathbb{V}, \langle -, - \rangle$ is a complex vector space along with an inner product

Norm and Distance

• for every complex inner product space you can define a norm/length which is a function

$$||:\mathbb{V}\to\mathbb{R}$$

defined as $|V| = \sqrt{\langle V, V \rangle}$

- intuition: norm of a vector in any vector space is its length
- properties:
 - nondegenerate
 - satisfies triangle inequality $|V + W| \le |V| + |W|$
 - respects scalar multiplication
- for every complex inner product space you can define a distance function

$$d(,):\mathbb{V}\to\mathbb{R}$$

where

$$d(V_1,V_2) = |V_1-V_2| = \sqrt{\langle V_1-V_2\rangle, \langle V_1-V_2\rangle}$$

- intuition: $d(V_1, V_2)$ is the distance from the end of vector V_1 to the end of vector V_2
- properties
 - non-degenerate
 - satisfies triangle inequality
 - symmetric

Orthogonal Basis

- two vectors $V_1, V_2 \in \mathbb{V}$, an inner product space, are **orthogonal** if $\langle V_1, V_2, \rangle = 0$
- **intuition:** two vectors are orthogonal if they are perpendicular to each other
- a basis $\mathbb{B} = \{V_0, ..., V_{n-1}\}$ for an inner product space \mathbb{V} is called an **orthogonal basis** if the vectors are pairwise orthogonal to each other: $j \neq k \implies \langle V_i, V_k \rangle = 0$
- orthonormal basis: orthogonal basis of norm 1 (Kronecker delta, $\delta_{i,k}$)

Eigenvalues and Eigenvectors

- for certain vectors, the action of a matrix upon it merely changes its length, while the direction remains the same
- such vectors are eigenvectors, and the scalar multiples are eigenvalues (for the matrix)
- formally: for a matrix $A \in \mathbb{C}^{n \times n}$, if $\exists c \in \mathbb{C}$ and a non-zero vector $V \in \mathbb{C}^n$, such that:

$$AV = c \cdot V$$

- c: eigenvalue of A
- V: eigenvector of A associated with c
- eigenspace: every eigenvector determines a complex subvector space of the vector space

Hermitian Matrices

- a matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A^T = A$
- generalising to the complex numbers: a matrix $A \in \mathbb{C}^{n \times n}$ is **Hermitian** if $A^{\dagger} = A$

-
$$A_{jk} = \overline{A_{kj}}$$

- if A is hermitian, the operator it represents is called **self-adjoint**
- the diagonal elements of a hermitian matrix must be real
- if A is hermitian, then $\forall V,V'\in\mathbb{C}^n$:

$$\langle AV, V' \rangle = \langle V, AV' \rangle$$

- if A is hermitian, then all eigenvalues are real
- · for a given hermitian matrix, distinct eigenvectors with distinct eigenvalues are orthogonal
- diagonal matrix: square matrix whose only non-zero entries are on the diagonal

- Spectral Theorem for Finite-Dimensional Self-Adjoint Operators: every self-adjoint operator *A* on a finite-dimensional complex vector space *V* can be represented by a diagonal matrix whose diagonal entries are the eigenvalues of *A*, and whose eigenvectors form an orthonormal basis (an **eigenbasis**) for *V*
- every physical observable of a quantum system has a corresponding hermitian matrix

Unitary Matrices

• a matrix A is **invertible** if $\exists A^{-1}$, such that:

$$A * A^{-1} = A^{-1} * A = I_n$$

- unitary matrices are a flavour of invertible matrix, whose inverse is their adjoint: this ensure unitary matrices preserve the geometry of the space on which they act
- NB: not all invertible matrices are unitary
- formally: a matrix $U \in \mathbb{C}^{n \times n}$ is **unitary** if:

$$U * U^{\dagger} = U^{\dagger} * U = I_n$$

- unitary matrices preserve inner products: if U is unitary $\langle UV, UV' \rangle = \langle V, V' \rangle$, for any $V, V' \in \mathbb{C}^n$
- unitary matrices preserve norms: |UV| = |V|
- isometry: unitary matrices preserve distance: $d(UV_1, UV_2) = d(V_1, V_2)$
- if |V| = 1, |UV| = 1. The set of all such vectors forms the **unit sphere**
- a unitary matrix performs a rotation of the unit sphere
- if U is unitary, and $UV=V^\prime$
 - we can form U^{\dagger} and multiply both sides by it: $U^{\dagger}UV = U^{\dagger}V'$
 - gives $V = U^{\dagger}V'$
 - i.e. as U is unitary, there is a related matrix that is able to **undo** the action U performs
 - U^{\dagger} takes the result of U's action and gets back to the original vector
 - in the quantum world, all actions (other than measurements) are undoable/reversible in this sense

Tensor Products