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Complex Vector Spaces

• complex vector space: non-empty set 𝕍 of vectors

– (A) operations: addition, negation, scalar multiplication

– (A) zero vector 0 ∈ 𝕍

• properties:

– (A) commutative addition

– (A) associative addition

– (A) zero is an additive identity

– (A) every vector has an inverse 𝑉 + (−𝑉 ) = 0

– scalar multiplication has a unit: 1 ⋅ 𝑉 = 𝑉
– scalar multiplication respects complex multiplication

– scalar multiplication distributes over addition 𝑐 ⋅ (𝑉 + 𝑊) = 𝑐 ⋅ 𝑉 + 𝑐 ⋅ 𝑊
– scalar multiplication distributes over complex addition (𝑐1 + 𝑐2) ⋅ 𝑉 = 𝑐1 ⋅ 𝑉 + 𝑐2 ⋅ 𝑉

• any set with properties marked (A) is an Abelian group
• real vector space: non-empty set 𝕍 of vectors

– operations: additions, negation

* scalar multiplication uses ℝ not ℂ
– properties: analogous to complex vector space properties

• real vector space is likeacomplexvector space, except scalarmultiplication isdefined for scalars
in ℝ ⊂ ℂ

– as ℝ ⊂ ℂ, for every 𝕍, ℝ × 𝕍 ⊂ ℂ × 𝕍
– for a given scalar multiplication ⋅ ∶ ℂ × 𝕍 → 𝕍, you have: ℝ × 𝕍 ↪ ℂ × 𝕍 → 𝕍
– every complex vector space can automatically be given a real vector space structure

Complexmatrices

• e.g. ℂ𝑚×𝑛, the set of 𝑚 by 𝑛 matrices with complex entries is a complex vector space

• consider 𝐴 ∈ ℂ𝑚×𝑛. Then we can perform these operations on 𝐴:

• transpose: 𝐴𝑇 , with 𝐴𝑇
𝑖𝑗 = 𝐴𝑗𝑖

• conjugate: ̄𝐴 or 𝐴∗, with element-wise conjugation
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• adjoint/dagger: 𝐴† = (𝐴𝑇 ) = ( ̄𝐴)𝑇

• ∀𝐴, 𝐵 ∈ ℂ𝑚×𝑛, 𝑐 ∈ ℂ all 3 operations are: (let the operation be denoted 𝑥)

– idempotent: (𝐴𝑥)𝑥 = 𝐴
– respect addition: (𝐴 + 𝐵)𝑥 = 𝐴𝑥 + 𝐵𝑥

– respect scalar multiplication (𝑐 ⋅ 𝐴)𝑥 = 𝑐𝑥 ⋅ 𝐴𝑥

Matrix Multiplication

• matrix multiplication is a binary operation:

∗ ∶ ℂ𝑚×𝑛 × ℂ𝑛×𝑝 → ℂ𝑚×𝑝

• properties

– not commutative
– associative
– 𝐼𝑛 is a unit
– distributes over addition
– respects scalar multiplication
– relates to transpose: (𝐴 ∗ 𝐵)𝑇 = 𝐵𝑇 ∗ 𝐴𝑇

– respects the conjugate
– relates to adjoint: (𝐴 ∗ 𝐵)† = 𝐵† ∗ 𝐴†

• complex vector space 𝕍 with multiplication ∗ satisfying these properties is a complex algebra
• let 𝐴 ∈ ℂ𝑛×𝑛. For any 𝐵 ∈ ℂ𝑛 (a complex vector), 𝐴 ∗ 𝐵 ∈ ℂ𝑛

– i.e. multiplication by 𝐴 gives a function: 𝐴 ∶ ℂ𝑛 → ℂ𝑛

– 𝐴 acts on vectors to yield new vectors

Linear maps

• linear map between complex vector spaces 𝕍, 𝕍′ is a function 𝑓 ∶ 𝕍 → 𝕍′ s.t. ∀𝑉 , 𝑉1, 𝑉2 ∈
𝕍, 𝑐 ∈ ℂ

– 𝑓 respects addition: 𝑓(𝑉1 + 𝑉2) = 𝑓(𝑉1) + 𝑓(𝑉2)
– 𝑓 respects scalar multiplication: 𝑓(𝑐 ⋅ 𝑉 ) = 𝑐 ⋅ 𝑓(𝑉 )

• operator: linear map from a complex vector space to itself

– if 𝐹 ∶ ℂ𝑛 → ℂ𝑛 is an operator on ℂ, 𝐴 is an n-by-n matrix s.t. ∀𝑉 𝐹(𝑉 ) = 𝐴 ∗ 𝑉 , then say
𝐹 is represented by 𝐴
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Isomorphism

• two complex vector spaces𝕍, 𝕍′ are isomorphic if there is a bijective (one-to-one + onto) linear
map 𝑓 ∶ 𝕍 → 𝕍′

– call 𝑓 an isomorphism

• when two vector spaces are isomorphic: the names of the elements of the vector space are
renamed, but the structure of the 2 vector spaces are the same: the vector spaces are essentially
the same, or the same up to isomorphism

• for complex vector spaces 𝕍, 𝕍′: 𝕍 is a complex subspace of 𝕍′ if 𝕍 ⊆ 𝕍, and operations of 𝕍
are restrictions of operations of 𝕍′

• equivalently: 𝕍 is a complex subspace of 𝕍′ if 𝕍 ⊆ 𝕍, and

– 𝕍 closed under addition and scalar multiplication

Isomorphism Example

• e.g. all matrices of the following form comprise a real subspace of ℝ2×2

[ 𝑥 𝑦
−𝑦 𝑥]

• this subspace is isomorphic to ℂ via map 𝑓 ∶ ℂ → ℝ2×2 defined as:

𝑓(𝑥 + 𝑖𝑦) = [ 𝑥 𝑦
−𝑦 𝑥]

Basis and Dimension

• a set of vectors {𝑉0, ..., 𝑉𝑛−1} ∈ 𝕍 is linearly independent if

0 = 𝑐0 ⋅ 𝑉0 + ... + 𝑐𝑛−1 ⋅ 𝑉𝑛−1

implies 𝑐0 = ... = 𝑐𝑛−1 = 0. - i.e. the only way a linear combination of the vectors can be the zero
vector is if all 𝑐𝑖 are zero - linearly independent i.e. each vector in the set cannot be expressed as a
linear combination of the other vectors in the set - equivalent to saying for any non-zero vector 𝑉 ∈ 𝕍
there are unique coefficients 𝑐𝑖 ∈ ℂ s.t. V is a linear combination of these vectors multiplied by these
coefficients - a set of vectors ℬ ⊆ 𝕍 forms a basis of complex vector space 𝕍 if - every 𝑉 ∈ 𝕍 can be
written as a linear combination of vectors from ℬ, and - ℬ is linearly independent - every basis of a
vector space has the same number of vectors, its dimension
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Change of basis

• change of basis/transitionmatrix: from basis ℬ to 𝒟 is a matrix 𝑀𝒟←ℬ s.t. for any matrix 𝕍:

𝑉𝒟 = 𝑀𝒟←ℬ ∗ 𝑉ℬ

• i.e. the matrix gets the coefficients with respect to one basis from the coefficients with respect
to another basis

Hadamard Matrix

• in ℝ2, the transition matrix from the canonical basis to the following basis:

{[
1√
2

1√
2
] , [

1√
2

− 1√
2
]}

is theHadamardmatrix

𝐻 = 1√
2

[1 1
1 −1]

• 𝐻 ∗ 𝐻 = 𝐼2, so the transition back to the canonical basis is also 𝐻
• 𝐻 is commonly used for change of basis in quantum computing calculations

Inner Products and Hilbert Spaces

• inner product/dot product/scalar product on a complex vector space 𝕍 is a function

⟨−, −⟩ = 𝕍 × 𝕍 → ℂ

• ∀𝑉 , 𝑉1, 𝑉2, 𝑉3 ∈ 𝕍, ∀𝑎, 𝑐 ∈ ℂ the inner product has the properties
• non-degenerate:

– ⟨𝑉 , 𝑉 ⟩ ≥ 0
– ⟨𝑉 , 𝑉 ⟩ = 0 ⟺ 𝑉 = 0 (only degenerate when it is 0)

• respects addition

– ⟨𝑉1 + 𝑉2, 𝑉3⟩⟨𝑉1, 𝑉3⟩ + ⟨𝑉2, 𝑉3⟩ ≥ 0, and vice versa
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• respects scalar multiplication

– ⟨𝑐 ⋅ 𝑉1, 𝑉2⟩ = 𝑐 ⋅ ⟨𝑉1, 𝑉2⟩, and vice versa

• skew symmetric

– ⟨𝑉1, 𝑉2⟩ = ⟨𝑉2, 𝑉1⟩, and vice versa

• a complex innerproduct space𝕍, ⟨−, −⟩ is a complex vector spacealongwith an inner product

Norm and Distance

• for every complex inner product space you can define a norm/lengthwhich is a function

|| ∶ 𝕍 → ℝ

defined as |𝑉 | = √⟨𝑉 , 𝑉 ⟩

• intuition: norm of a vector in any vector space is its length
• properties:

– nondegenerate
– satisfies triangle inequality |𝑉 + 𝑊| ≤ |𝑉 | + |𝑊|
– respects scalar multiplication

• for every complex inner product space you can define a distance function

𝑑(, ) ∶ 𝕍 → ℝ

where

𝑑(𝑉1, 𝑉2) = |𝑉1 − 𝑉2| = √⟨𝑉1 − 𝑉2⟩, ⟨𝑉1 − 𝑉2⟩

• intuition: 𝑑(𝑉1, 𝑉2) is the distance from the end of vector 𝑉1 to the end of vector 𝑉2
• properties

– non-degenerate
– satisfies triangle inequality
– symmetric
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Orthogonal Basis

• two vectors 𝑉1, 𝑉2 ∈ 𝕍, an inner product space, are orthogonal if ⟨𝑉1, 𝑉2, ⟩ = 0
• intuition: two vectors are orthogonal if they are perpendicular to each other
• a basis 𝔹 = {𝑉0, ..., 𝑉𝑛−1} for an inner product space 𝕍 is called an orthogonal basis if the
vectors are pairwise orthogonal to each other: 𝑗 ≠ 𝑘 ⟹ ⟨𝑉𝑗, 𝑉𝑘⟩ = 0

• orthonormal basis: orthogonal basis of norm 1 (Kronecker delta, 𝛿𝑗,𝑘)

Eigenvalues and Eigenvectors

• for certain vectors, the action of a matrix upon it merely changes its length, while the direction
remains the same

• such vectors are eigenvectors, and the scalar multiples are eigenvalues (for the matrix)
• formally: for a matrix 𝐴 ∈ ℂ𝑛×𝑛, if ∃𝑐 ∈ ℂ and a non-zero vector 𝑉 ∈ ℂ𝑛, such that:

𝐴𝑉 = 𝑐 ⋅ 𝑉

• 𝑐: eigenvalue of 𝐴

• 𝑉 : eigenvector of 𝐴 associated with 𝑐

• eigenspace: every eigenvector determines a complex subvector space of the vector space

Hermitian Matrices

• a matrix 𝐴 ∈ ℝ𝑛×𝑛 is symmetric if 𝐴𝑇 = 𝐴
• generalising to the complex numbers: a matrix 𝐴 ∈ ℂ𝑛×𝑛 isHermitian if 𝐴† = 𝐴

– 𝐴𝑗𝑘 = 𝐴𝑘𝑗

• if 𝐴 is hermitian, the operator it represents is called self-adjoint
• the diagonal elements of a hermitian matrix must be real
• if 𝐴 is hermitian, then ∀𝑉 , 𝑉 ′ ∈ ℂ𝑛:

⟨𝐴𝑉 , 𝑉 ′⟩ = ⟨𝑉 , 𝐴𝑉 ′⟩

• if 𝐴 is hermitian, then all eigenvalues are real
• for a given hermitian matrix, distinct eigenvectors with distinct eigenvalues are orthogonal
• diagonal matrix: square matrix whose only non-zero entries are on the diagonal
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• Spectral Theorem for Finite-Dimensional Self-Adjoint Operators: every self-adjoint opera-
tor 𝐴 on a finite-dimensional complex vector space 𝕍 can be represented by a diagonal matrix
whose diagonal entries are the eigenvalues of𝐴, andwhose eigenvectors form an orthonormal
basis (an eigenbasis) for 𝕍

• every physical observable of a quantum system has a corresponding hermitian matrix

Unitary Matrices

• a matrix 𝐴 is invertible if ∃𝐴−1, such that:

𝐴 ∗ 𝐴−1 = 𝐴−1 ∗ 𝐴 = 𝐼𝑛

• unitary matrices are a flavour of invertible matrix, whose inverse is their adjoint: this ensure
unitary matrices preserve the geometry of the space on which they act

• NB: not all invertible matrices are unitary
• formally: a matrix 𝑈 ∈ ℂ𝑛×𝑛 is unitary if:

𝑈 ∗ 𝑈† = 𝑈† ∗ 𝑈 = 𝐼𝑛

• unitarymatrices preserve inner products: if𝑈 is unitary ⟨𝑈𝑉 , 𝑈𝑉 ′⟩ = ⟨𝑉 , 𝑉 ′⟩, for any 𝑉 , 𝑉 ′ ∈
ℂ𝑛

• unitary matrices preserve norms: |𝑈𝑉 | = |𝑉 |
• isometry: unitary matrices preserve distance: 𝑑(𝑈𝑉1, 𝑈𝑉2) = 𝑑(𝑉1, 𝑉2)
• if |𝑉 | = 1, |𝑈𝑉 | = 1. The set of all such vectors forms the unit sphere
• a unitary matrix performs a rotation of the unit sphere
• if 𝑈 is unitary, and 𝑈𝑉 = 𝑉 ′

– we can form 𝑈† andmultiply both sides by it: 𝑈†𝑈𝑉 = 𝑈†𝑉 ′

– gives 𝑉 = 𝑈†𝑉 ′

– i.e. as 𝑈 is unitary, there is a related matrix that is able to undo the action 𝑈 performs
– 𝑈† takes the result of 𝑈 ’s action and gets back to the original vector
– in the quantum world, all actions (other than measurements) are undoable/reversible in
this sense

Tensor Products
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