Complex Vector Spaces

- complex vector space: non-empty set \mathbb{V} of vectors
- (A) operations: addition, negation, scalar multiplication
- (A) zero vector $\mathbf{0} \in \mathbb{V}$

- properties:

- (A) commutative addition
- (A) associative addition
- (A) zero is an additive identity
- (A) every vector has an inverse $V+(-V)=\mathbf{0}$
- scalar multiplication has a unit: $1 \cdot V=V$
- scalar multiplication respects complex multiplication
- scalar multiplication distributes over addition $c \cdot(V+W)=c \cdot V+c \cdot W$
- scalar multiplication distributes over complex addition $\left(c_{1}+c_{2}\right) \cdot V=c_{1} \cdot V+c_{2} \cdot V$
- any set with properties marked (A) is an Abelian group
- real vector space: non-empty set \mathbb{V} of vectors
- operations: additions, negation
* scalar multiplication uses \mathbb{R} not \mathbb{C}
- properties: analogous to complex vector space properties
- real vector space is like a complex vector space, except scalar multiplication is defined for scalars in $\mathbb{R} \subset \mathbb{C}$
- as $\mathbb{R} \subset \mathbb{C}$, for every $\mathbb{V}, \mathbb{R} \times \mathbb{V} \subset \mathbb{C} \times \mathbb{V}$
- for a given scalar multiplication : : $\mathbb{C} \times \mathbb{V} \rightarrow \mathbb{V}$, you have: $\mathbb{R} \times \mathbb{V} \hookrightarrow \mathbb{C} \times \mathbb{V} \rightarrow \mathbb{V}$
- every complex vector space can automatically be given a real vector space structure

Complex matrices

- e.g. $\mathbb{C}^{m \times n}$, the set of m by n matrices with complex entries is a complex vector space
- consider $A \in \mathbb{C}^{m \times n}$. Then we can perform these operations on A :
- transpose: A^{T}, with $A_{i j}^{T}=A_{j i}$
- conjugate: \bar{A} or A^{*}, with element-wise conjugation
- adjoint/dagger: $A^{\dagger}=\overline{\left(A^{T}\right)}=(\bar{A})^{T}$
- $\forall A, B \in \mathbb{C}^{m \times n}, c \in \mathbb{C}$ all 3 operations are: (let the operation be denoted x)
- idempotent: $\left(A^{x}\right)^{x}=A$
- respect addition: $(A+B)^{x}=A^{x}+B^{x}$
- respect scalar multiplication $(c \cdot A)^{x}=c^{x} \cdot A^{x}$

Matrix Multiplication

- matrix multiplication is a binary operation:

$$
*: \mathbb{C}^{m \times n} \times \mathbb{C}^{n \times p} \rightarrow \mathbb{C}^{m \times p}
$$

- properties
- not commutative
- associative
- I_{n} is a unit
- distributes over addition
- respects scalar multiplication
- relates to transpose: $(A * B)^{T}=B^{T} * A^{T}$
- respects the conjugate
- relates to adjoint: $(A * B)^{\dagger}=B^{\dagger} * A^{\dagger}$
- complex vector space \mathbb{V} with multiplication $*$ satisfying these properties is a complex algebra
- let $A \in \mathbb{C}^{n \times n}$. For any $B \in \mathbb{C}^{n}$ (a complex vector), $A * B \in \mathbb{C}^{n}$
- i.e. multiplication by A gives a function: $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$
- A acts on vectors to yield new vectors

Linear maps

- linear map between complex vector spaces $\mathbb{V}, \mathbb{V}^{\prime}$ is a function $f: \mathbb{V} \rightarrow \mathbb{V}^{\prime}$ s.t. $\forall V, V_{1}, V_{2} \in$ $\mathbb{V}, c \in \mathbb{C}$
- f respects addition: $f\left(V_{1}+V_{2}\right)=f\left(V_{1}\right)+f\left(V_{2}\right)$
- f respects scalar multiplication: $f(c \cdot V)=c \cdot f(V)$
- operator: linear map from a complex vector space to itself
- if $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is an operator on \mathbb{C}, A is an n-by-n matrix s.t. $\forall V F(V)=A * V$, then say F is represented by A

Isomorphism

- two complex vector spaces $\mathbb{V}, \mathbb{V}^{\prime}$ are isomorphic if there is a bijective (one-to-one + onto) linear $\operatorname{map} f: \mathbb{V} \rightarrow \mathbb{V}^{\prime}$
- call f an isomorphism
- when two vector spaces are isomorphic: the names of the elements of the vector space are renamed, but the structure of the 2 vector spaces are the same: the vector spaces are essentially the same, or the same up to isomorphism
- for complex vector spaces $\mathbb{V}, \mathbb{V}^{\prime}: \mathbb{V}$ is a complex subspace of \mathbb{V}^{\prime} if $\mathbb{V} \subseteq \mathbb{V}$, and operations of \mathbb{V} are restrictions of operations of \mathbb{V}^{\prime}
- equivalently: \mathbb{V} is a complex subspace of \mathbb{V}^{\prime} if $\mathbb{V} \subseteq \mathbb{V}$, and
- V closed under addition and scalar multiplication

Isomorphism Example

- e.g. all matrices of the following form comprise a real subspace of $\mathbb{R}^{2 \times 2}$

$$
\left[\begin{array}{cc}
x & y \\
-y & x
\end{array}\right]
$$

- this subspace is isomorphic to \mathbb{C} via map $f: \mathbb{C} \rightarrow \mathbb{R}^{2 \times 2}$ defined as:

$$
f(x+i y)=\left[\begin{array}{cc}
x & y \\
-y & x
\end{array}\right]
$$

Basis and Dimension

- a set of vectors $\left\{V_{0}, \ldots, V_{n-1}\right\} \in \mathbb{V}$ is linearly independent if

$$
\mathbf{0}=c_{0} \cdot V_{0}+\ldots+c_{n-1} \cdot V_{n-1}
$$

$\operatorname{implies} c_{0}=\ldots=c_{n-1}=0$. - i.e. the only way a linear combination of the vectors can be the zero vector is if all c_{i} are zero - linearly independent i.e. each vector in the set cannot be expressed as a linear combination of the other vectors in the set - equivalent to saying for any non-zero vector $V \in \mathbb{V}$ there are unique coefficients $c_{i} \in \mathbb{C}$ s.t. V is a linear combination of these vectors multiplied by these coefficients - a set of vectors $\mathcal{B} \subseteq \mathbb{V}$ forms a basis of complex vector space \mathbb{V} if - every $V \in \mathbb{V}$ can be written as a linear combination of vectors from \mathcal{B}, and $-\mathcal{B}$ is linearly independent - every basis of a vector space has the same number of vectors, its dimension

Change of basis

- change of basis/transition matrix: from basis \mathcal{B} to \mathcal{D} is a matrix $M_{\mathcal{D} \leftarrow \mathcal{B}}$ s.t. for any matrix \mathbb{V} :

$$
V_{\mathcal{D}}=M_{\mathcal{D} \leftarrow \mathcal{B}} * V_{\mathcal{B}}
$$

- i.e. the matrix gets the coefficients with respect to one basis from the coefficients with respect to another basis

Hadamard Matrix

- in \mathbb{R}^{2}, the transition matrix from the canonical basis to the following basis:

$$
\left\{\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]\right\}
$$

is the Hadamard matrix

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- $H * H=I_{2}$, so the transition back to the canonical basis is also H
- H is commonly used for change of basis in quantum computing calculations

Inner Products and Hilbert Spaces

- inner product/dot product/scalar product on a complex vector space \mathbb{V} is a function

$$
\langle-,-\rangle=\mathbb{V} \times \mathbb{V} \rightarrow \mathbb{C}
$$

- $\forall V, V_{1}, V_{2}, V_{3} \in \mathbb{V}, \forall a, c \in \mathbb{C}$ the inner product has the properties
- non-degenerate:
- $\langle V, V\rangle \geq 0$
- $\langle V, V\rangle=0 \Longleftrightarrow V=0$ (only degenerate when it is 0)
- respects addition
- $\left\langle V_{1}+V_{2}, V_{3}\right\rangle\left\langle V_{1}, V_{3}\right\rangle+\left\langle V_{2}, V_{3}\right\rangle \geq 0$, and vice versa
- respects scalar multiplication
- $\left\langle c \cdot V_{1}, V_{2}\right\rangle=c \cdot\left\langle V_{1}, V_{2}\right\rangle$, and vice versa
- skew symmetric
- $\left\langle V_{1}, V_{2}\right\rangle=\overline{\left\langle V_{2}, V_{1}\right\rangle}$, and vice versa
- a complex inner product space $\mathbb{V},\langle-,-\rangle$ is a complex vector space along with an inner product

Norm and Distance

- for every complex inner product space you can define a norm/length which is a function

$$
\|: V \rightarrow \mathbb{R}
$$

defined as $|V|=\sqrt{\langle V, V\rangle}$

- intuition: norm of a vector in any vector space is its length
- properties:
- nondegenerate
- satisfies triangle inequality $|V+W| \leq|V|+|W|$
- respects scalar multiplication
- for every complex inner product space you can define a distance function

$$
d(,): \mathbb{V} \rightarrow \mathbb{R}
$$

where

$$
d\left(V_{1}, V_{2}\right)=\left|V_{1}-V_{2}\right|=\sqrt{\left\langle V_{1}-V_{2}\right\rangle,\left\langle V_{1}-V_{2}\right\rangle}
$$

- intuition: $d\left(V_{1}, V_{2}\right)$ is the distance from the end of vector V_{1} to the end of vector V_{2}
- properties
- non-degenerate
- satisfies triangle inequality
- symmetric

Orthogonal Basis

- two vectors $V_{1}, V_{2} \in \mathbb{V}$, an inner product space, are orthogonal if $\left\langle V_{1}, V_{2},\right\rangle=0$
- intuition: two vectors are orthogonal if they are perpendicular to each other
- a basis $\mathbb{B}=\left\{V_{0}, \ldots, V_{n-1}\right\}$ for an inner product space \mathbb{V} is called an orthogonal basis if the vectors are pairwise orthogonal to each other: $j \neq k \Longrightarrow\left\langle V_{j}, V_{k}\right\rangle=0$
- orthonormal basis: orthogonal basis of norm 1 (Kronecker delta, $\delta_{j, k}$)

Eigenvalues and Eigenvectors

- for certain vectors, the action of a matrix upon it merely changes its length, while the direction remains the same
- such vectors are eigenvectors, and the scalar multiples are eigenvalues (for the matrix)
- formally: for a matrix $A \in \mathbb{C}^{n \times n}$, if $\exists c \in \mathbb{C}$ and a non-zero vector $V \in \mathbb{C}^{n}$, such that:

$$
A V=c \cdot V
$$

- c : eigenvalue of A
- V : eigenvector of A associated with c
- eigenspace: every eigenvector determines a complex subvector space of the vector space

Hermitian Matrices

- a matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A^{T}=A$
- generalising to the complex numbers: a matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian if $A^{\dagger}=A$

$$
-A_{j k}=\overline{A_{k j}}
$$

- if A is hermitian, the operator it represents is called self-adjoint
- the diagonal elements of a hermitian matrix must be real
- if A is hermitian, then $\forall V, V^{\prime} \in \mathbb{C}^{n}$:

$$
\left\langle A V, V^{\prime}\right\rangle=\left\langle V, A V^{\prime}\right\rangle
$$

- if A is hermitian, then all eigenvalues are real
- for a given hermitian matrix, distinct eigenvectors with distinct eigenvalues are orthogonal
- diagonal matrix: square matrix whose only non-zero entries are on the diagonal
- Spectral Theorem for Finite-Dimensional Self-Adjoint Operators: every self-adjoint operator A on a finite-dimensional complex vector space \mathbb{V} can be represented by a diagonal matrix whose diagonal entries are the eigenvalues of A, and whose eigenvectors form an orthonormal basis (an eigenbasis) for \mathbb{V}
- every physical observable of a quantum system has a corresponding hermitian matrix

Unitary Matrices

- a matrix A is invertible if $\exists A^{-1}$, such that:

$$
A * A^{-1}=A^{-1} * A=I_{n}
$$

- unitary matrices are a flavour of invertible matrix, whose inverse is their adjoint: this ensure unitary matrices preserve the geometry of the space on which they act
- NB: not all invertible matrices are unitary
- formally: a matrix $U \in \mathbb{C}^{n \times n}$ is unitary if:

$$
U * U^{\dagger}=U^{\dagger} * U=I_{n}
$$

- unitary matrices preserve inner products: if U is unitary $\left\langle U V, U V^{\prime}\right\rangle=\left\langle V, V^{\prime}\right\rangle$, for any $V, V^{\prime} \in$ \mathbb{C}^{n}
- unitary matrices preserve norms: $|U V|=|V|$
- isometry: unitary matrices preserve distance: $d\left(U V_{1}, U V_{2}\right)=d\left(V_{1}, V_{2}\right)$
- if $|V|=1,|U V|=1$. The set of all such vectors forms the unit sphere
- a unitary matrix performs a rotation of the unit sphere
- if U is unitary, and $U V=V^{\prime}$
- we can form U^{\dagger} and multiply both sides by it: $U^{\dagger} U V=U^{\dagger} V^{\prime}$
- gives $V=U^{\dagger} V^{\prime}$
- i.e. as U is unitary, there is a related matrix that is able to undo the action U performs
- U^{\dagger} takes the result of U 's action and gets back to the original vector
- in the quantum world, all actions (other than measurements) are undoable/reversible in this sense

Tensor Products

