
Summary 2020-06-16 13:56

Summary

Table of Contents

• Compiling and running
• Java features
• Java Identifiers
• Classes
• Wrapper classes
• Object Oriented Features
• Static Members
• Mutability
• Standard Methods
• Visibility Modifiers
• Motivation for Inheritance and Polymorphism
• Inheritance

– Access control
– Abstract vs Concrete classes
– Object class

• Interfaces

– Sorting
– Inheritance vs Interfaces

• Polymorphism
• Generics

– Tuple
– Subtyping
– Generic Methods

• Collections

– Common Operations
– Hierarchy
– ArrayList
– Comparator

• Maps

– Common operations

1



Summary 2020-06-16 13:56

– Hierarchy
– Use of HashMap
– Sorting with Maps

• Exceptions

– Errors
– Protecting against runtime errors
– try-catch statement
– try-with
– Chaining
– Generating exceptions
– Types of Exceptions

• Design Patterns

– Classes of Patterns
– Singleton Pattern
– Template Method
– Strategy pattern
– Factory method
– Observer pattern

• Software Design

– Javadocs
– Code Smells
– GRASP

• Testing

– JUnit testing

• Event Programming
• Composition over inheritance
• Enumerated types
• Variadic Parameters
• Functional interface

– Predicate
– Unary operator

• Lambda expressions
• Method References

2



Summary 2020-06-16 13:56

• Streams
• Scanner
• Reading files
• Packages

– Defining a package
– Using packages
– Default package

Compiling and running

1 # compile
2 $ javac HelloWorld.java
3 # compiler outputs HelloWorld.class
4 # run (no extension)
5 $ java HelloWorld

Java features

1. compiled and interpreted
2. platform independent
3. object oriented

3



Summary 2020-06-16 13:56

Figure 1: java_compiled_and_interpreted

• Java is compiled to bytecode, then interpreted to machine code
• that bytecode is portable: you can take it to any machine
• porting Java to a new system involves writing a JVM implementation for that system
• most modern implementations of the JVM use just-in-time compilation

Java Identifiers

• rules:

– must not start with a digit
– all characters must be in {letters, digits, underscore}
– can theoretically be of any length
– are case-sensitive

• convention:

– camelCase for variables, methods, objects
– class names use capitalised CamelCase
– constants use UPPER_CASE with underscore

4



Summary 2020-06-16 13:56

Classes

• class: fundamental unit of abstraction in OOP. Represents an entity, whether physical or ab-
stract that is part of the problem.

– defines a new data type containing attributes and methods that provides a template to
generalise things with common properties

• object: specific, concrete example of a class
• instance: object that exists in your code
• this: reference to object itself
• super: reference to object’s parent class
• final: indicates an attribute, method, or class can only be assigned, declared, or defined
once

Wrapper classes

• primitive: unit of information containing only data, with no attributes or methods
• wrapper: class providing extra functionality to primitive data types, allowing them to behave
like objects

• un/boxing: process of converting a primitive to/from equivalent wrapper class

Object Oriented Features

• dataabstraction: techniqueof creatingnewdata typeswell suited toanapplicationbydefining
new classes, comprised of:

– attributes: data an object can contain
– methods: actions an object can perform

• encapsulation: ability to group attributes and methods that manipulate those attributes as a
single entity, by defining a class

– not provided by procedural programming paradigm
– packages: grouping of classes and interfaces into bundles that can be handled together,
allowing reuse of code, control of namespace, and access control

* another example of encapsulation

• information hiding: ability to hide details of a class from the outside world

– allows you to modify implementation without affecting interface

5



Summary 2020-06-16 13:56

– access control: prevent outside class from manipulating properties of another class in
undesired ways

• delegation: association relationship; “has a”. Class delegates responsibilities to another class

– e.g. Point inside a Circle class representing the centre

• inheritance: form of abstraction that allows you to generalise similar attributes and methods
of classes. Allows code reuse

• polymorphism: ability to process objects differently depending on their data type or class

Static Members

• static member: method/attribute not specific to an object of the class
• static variable: variable shared among all objects of the class, i.e. a single instance is shared
among classes. Accessed using class name.

• static method: method that does not depend on (access or modify) any instance variables of
the class. Invoked using the class name

– can only call other static methods
– can only access static data
– cannot refer to this, super as they are related to objects

Mutability

• mutable: a class is mutable if it contains public mutator methods that can change instance
variables

• immutable: a class with nomethods that can change instance variables (except constructors)

Standard Methods

• equals: allows object comparison (implemented as dictated by the needs of the class)
• toString: produces a string representation of an object
• copy: creates a separate copy of the object provided as input; should be a deep copy

Visibility Modifiers

• access control

– safely seals data in capsule of class

6



Summary 2020-06-16 13:56

– prevents programmers from relying on details of class implementation
– helps protect against accidental/wrong usage
– keeps code elegant, clean, making maintenance easier
– provides access to an object through a clean interface

• public: available/visible everywhere (within/outside the class)

– anyone can use it

• private: only visiblewithin a class

– methods/attributes
– not visible within subclasses
– not inherited

• protected: only visible within class, subclasses, and all classes in the same package

– methods/attributes
– visible to subclasses in other packages

• default: visibility modifier omitted;

– can be accessed within other classes in the same package, but not from outside the pack-
age

Modifier Class Package Subclass Outside

public Y Y Y Y

protected Y Y Y N

default Y Y N N

private Y N N N

Motivation for Inheritance and Polymorphism

• without inheritance/polymorphism

– repeated code: hard to implement/debug/maintain
– doesn’t represent similarity/relationship between entities
– difficult to extend

7



Summary 2020-06-16 13:56

Inheritance

• superclass: parent/base class in inheritance relationship, providing general information to
child classes

• subclass: derived/child class in inheritance relationship, inheriting common attributes and
methods from parent class. More specific form of superclass

– subclasses contain all public/protected instance variables/methods in base class

• extends: indicates one class inherits from another

1 public class Subclass extends Superclass { ... }

• represents an is a relationship (associaton)

Access control

• child classes cannot call private methods, and cannot access private attributes of parent
classes

• child classes can call protected methods, and can access protected attributes of parent
classes

• privacy leak: child classesmodifyingprotectedattributesof parent class canproduceprivacy
leaks, as these modifications won’t be subject to any validation checks, potentially producing
invalid state

– preferable for parent class to access attributes through public/protectedmethods of
parent class

• protectedmethods: use whenmethods will only be used by subclasses
• child class cannot further restrict visibility of an overriddenmethod:

– public in parent: public in child
– protected in parent: protected or public
– privatemethod cannot be overridden

• shadowing: variables declaredwith the samename in overlapping scopes, e.g. in subclass and
superclass. Variable accessed depends on reference type rather than the object.

– avoid doing it. Define common variables in the superclass.

• getClass: returns object of type Class representing details of calling object’s class
• instanceof: operator that returnstrue if an object A is an instance of the same class as object
B, or a class that inherits from B:

8



Summary 2020-06-16 13:56

1 new Rook() instanceof Piece; // true
2 new Piece() instanceof Rook; // false

• upcast: object of a child class is assigned to variable of ancestor class
• downcast: object of an ancestor class is assigned to a variable of a child class

– only works if underlying object is actually of that class
– use with care! Lots of downcasting is a smell

• abstract method: defines superclass method common to all subclasses with no implementa-
tion. Each subclass then implements the method via overriding.

– <visibility> abstract <returnType> <methodName>(<args>);
– classes with abstract methods must be abstract

• abstract class: defines an incomplete class

– General concepts that are not fully realised but provides useful grouping, with specific de-
tails implemented in subclasses

– represent an incomplete concept than some real entity used in solving a problem
– cannot be instantiated
– <visibility> abstract class <ClassName> { ... }
– abstract classes may have abstract methods

• concrete class: class that is not abstract, that is fully defined, in terms of actions it can take.
Can be instantiated.

Abstract vs Concrete classes

Object class

• every class in Java implicitly inherits from the Object class
• all classes are of type Object
• all classes have a toStringmethod: by default prints out <class name>@<hash code>
• all classes have an equalsmethod: by default it compares references

Interfaces

• interface: declares set of constants andmethods that define the behaviour of an object

– represents a can do relationship

9



Summary 2020-06-16 13:56

– usually named <...>able, relating to an action
– e.g. classes implementing <Drivable> interface implement drivemethod
– methods never have any code
– all methods are implicitly abstract
– all attributes are implicitly static final
– all methods/attributes are implicilty public

1 public interface Printable {
2 int MAXIMUM_PIXEL_DENSITY = 1000;
3 void print();
4 }

• implements: declare that a class implements all functionality defined by an interface

– concrete classes must implement all methods, otherwise they must be abstract

1 public class Image implements Printable {
2 public void print() { ... }
3 }
4
5 public class Spreadsheet implements Printable {
6 public void print() { ... }
7 }

• default method: you can define default behaviour of interface that can be subsequently over-
ridden

1 public interface Printable {
2 default void print() {
3 System.out.println(this.toString());
4 }
5 }

• interfaces can be extended like classes, forming the same is a relationship

1 public interface Digitisable extends Printable {
2 public void digitise();
3 }

• classes can inherit only one class, but can implement multiple interfaces: allows you to build
powerful abstractions, making it much easier to create solutions

1 public class Spreadsheet extends Document implements Printable,
Colourable, Filterable,

2 Comparable<Spreadsheet> {
3 public void print() { ... }

10



Summary 2020-06-16 13:56

4 ...
5 }

Sorting

• Classes implementing Comparable<ClassName> interface

– can be compared with objects of same class
– must implement public int compareTo(<ClassName> object)
– allows them to be sorted without needing to implement sorting algorithms yourself

• compareTo: compares object A to object B

– Bmay be a subclass of A as long as they both implement Comparable
– returns < 0 if this A < argument B
– returns 0 if this A = argument B
– returns > 0 if this A > argument B

Inheritance vs Interfaces

• inheritance: generalises shared properties between similar classes, is a

• interfaces: generalise shared behaviour between potentially dissimilar classes, can do

• subtype polymorphism applies to interfaces and inheritance:

1 // inheritance
2 Robot robot = new WingedRobot(...);
3 // interfaces
4 Comparable<Robot> comparable = new Robot(...);

• All Animals including Dogs and Cats can make noise: inheritance, as Dog and Cat are clearly
related and will share common properties

• All Animals and Vehicles can make noise: interface, as no similarity between Animal and
Vehicle

• All classes can be compared with themselves: Comparable interface
• Some GameObjects can move, some can talk, some can be opened, some can attack: inter-
faces Movable, Talkable, Attackable implemented by particular classes inheriting from
GameObject

11



Summary 2020-06-16 13:56

Polymorphism

• polymorphism: ability to use objects/methods in many different ways (many forms)
• method overloading: ability to define method with the same name but different signatures.
Superclass methods can be overloaded in subclasses

– ad hoc polymorphism

• method overriding: declaring a method that exists in a superclass again in a subclass with
identical signature. Methods can only be overridden by subclasses

– subtype polymorphism
– extend/modify functionality of parent
– makes subclass behaviour available when using superclass references
– defines interface in superclass with particular behaviour implemented in subclass
– uses @Override annotation optionally
– cannot change return type
– privatemethods cannot be overridden
– finalmethods cannot be overridden

• substitution: use subclasses in place of superclasses

– subtype polymorphism

• generics: parametrised methods/classes

– parametric polymorphism

Generics

• facilitate code re-use by enabling generic logic to be written to apply to any class type
• generic class: class defined with an arbitrary type for a field, parameter or return type

– type parameter can have any reference type plugged in (any class type)

• limitations:

– cannot instantiate parametrised objects
– cannot create arrays of parametrised objects

• benefits:

– flexibility to reuse code for any type
– allow objects to keep their type (rather than be upcast to Object)

12



Summary 2020-06-16 13:56

– allows compiler to detect errors during development rather than producing run-time er-
rors

1 T item = new T(); // <- cannot do this!
2 T[] elements = new T[]; // <- cannot do this!

1 public class Sample<T> {
2 private T data;
3
4 public void setData(T data) {
5 this.data = data;
6 }
7
8 public T getData() {
9 return data;
10 }
11 }

Tuple

From Thinking in Java

1 public class TwoTuple<A, B> {
2 public final A first;
3 public final B second;
4
5 public TwoTypePair(A first, B second) {
6 this.first = first;
7 this.second = second;
8 }
9
10 @Override
11 public String toString() {
12 return "(" + first + ", " + second ")";
13 }
14 }

Usage:

1 public class TwoTupleDemo {
2 public static void main(String[] args) {
3 TwoTuple<String, Integer> rating = new TwoTuple<String, Integer

>("The Car Guys", 8);
4 System.out.println(rating);
5 }
6 }

13



Summary 2020-06-16 13:56

Subtyping

• generic subtyping: generic classes/interfaces are not related merely because the type param-
eters are related

– e.g. List<Dog> is not a subtype of List<Animal>
– in general: T1<X> <: T2<X> if T1 <: T2
– <: : is subtype of
– e.g.ArrayList<String> is subtype ofList<String> asArrayList is subtype ofList
:

1 ArrayList<String> arrayListStr = new ArrayList<String>();
2 List<String> listStr = arrayListStr;

• generic wildcard: allows you to read and insert to a generic collection

1 List<?> listUnknown = new ArrayList<A>(); // unknown wildcard
2 List<? extends A> listUnknown = new ArrayList<A>(); // extends wildcard
3 List<? super A> listUnknown = new ArrayList<A>(); // super wildcard

• unknownwildcard: list typed to unknown type; can only read the collection

– read-only collection

• extends wildcard: List<? extends A>means list of objects of type A or subclass of A

– we can read the list and cast elements to type A
– read-only collection

• super wildcard: List<? superA>means list of objects of type A or superclass of A

– safe to insert elements of type A or subclasses of A

1 public void insert(List<? super Animal> myList) {
2 myList.add(new Dog());
3 myList.add(newBear());
4 }
5
6 List<Animal> animals = new ArrayList<Animal>();
7 insert(animals);
8 Object o = animals.get(0); // upcast to object. Works
9 Animal a = animals.get(0); // downcast to animal; error as list could

be of type that is
10 // superclass of animal
11
12 List<Object> objects = new ArrayList<Object>();
13 insert(objects); // this is fine. Object is a superclass of Animal

14



Summary 2020-06-16 13:56

Generic Methods

• generic method: method that accepts arguments or returns objects of arbitrary type

– can be defined in any class
– type parameter is local to the method

1 public <T> int genericMethod(T arg); // generic argument
2 public <T> T genericMethod(String name); // generic return value
3 public <T> T genericMethod(T arg); // generic arg + return val
4 public <T,S> T genericMethod(S arg); // generic arg + return val

Collections

• Collections: framework that permits storing, accessing, manipulating lists

– ordered collection

• most useful:

– ArrayList: improved arrays
– HashSet: ensure unique elements
– PriorityQueue: order elements non-trivially
– TreeSet: fast lookup/search for unique elements

Common Operations

• length: int size()
• presence: boolean contains(Object element)

– requires implementation of equals(Object element)

• add: boolean add(E element)
• remove: boolean remove(Object element)
• iterating: Iterator<E> iterator()

– for (T t : Collection<t>)

• retrieval: Object get(int index)

15



Summary 2020-06-16 13:56

Hierarchy

Figure 2: java_collections

ArrayList

• class with an array as an instance variable
• iterable (for-each loops)
• handles resizing automatically
• allows you to insert, remove, get, modify, …
• has toString available
• easily sorted if stored element class implements Comparable<T> interface

– sorting invoked by Collections.sort(list);

• can be used for storing different types of objects that inherit from the same base class: allows
seamless execution of common behaviour; you can simply apply the commonmethod to every
itemwithout having to worry about what type of class it is

• cannot be directly indexed

16



Summary 2020-06-16 13:56

• limitations:

– doesn’t shrink automatically: can use excessive memory; trimToSize()
– cannot store primitives

Comparator

• implement different sorting approaches by implementing Comparator<T> interface

– requires implementation of compare(T obj1, T obj2);, behaving similar to
compareTo

– can invoke as Collections.sort(list, new Comparator<T>(){ ... });, where
the Comparator is implemented as an ___anonymous inner class‘

Maps

• Maps: framework that permits storing, accessing, manipulating key-value pairs

Common operations

• Length: int size()
• Presence: boolean containKey(Object key)

– boolean containValue(Object value)

• Add/replace: boolean put(K key, V value)
• Remove: ‘boolean remove(Object key)
• Iterating: Set<K> keySet()
• Iterating: Set<Map.Entry<K,V>> entrySet()
• Retrieval V get(Object key)

17



Summary 2020-06-16 13:56

Hierarchy

Figure 3: java_map

Use of HashMap

1 import java.util.HashMap;
2
3 public static void main(String[] args) {
4 HashMap<String,Book> library = new HashMap<>();
5 Book b1 = new Book("JRR Tolkien", "The Lord of the Rings", 1178);
6 Book b2 = new Book("George RR Martin", "A Game of Thrones", 694);
7 library.put(b1.author, b1);
8 library.put(b2.author, b2);
9
10 for (String author: library.keySet()) {
11 Book b = library.get(author);
12 System.out.println(b);
13 }
14 }

18



Summary 2020-06-16 13:56

Sorting with Map s

Here’s an example of sorting a HashMap by value, in reverse order, and printing the result:

1 public class Program {
2 public static void main(String[] args) {
3 Map<String, Integer> map = new HashMap<>();
4 map.put("orange", 1);
5 map.put("potato", 2);
6 map.put("banana", 5);
7 map.put("pineapple", 4);
8 map.put("apple", 3);
9 map.put("blueberry", 6);
10
11 map.entrySet()
12 .stream()
13 .sorted(Collections.reverseOrder(Map.Entry.

comparingByValue()))
14 .forEach(System.out::println);
15
16 }
17 }

Output:

1 blueberry=6
2 banana=5
3 pineapple=4
4 apple=3
5 potato=2
6 orange=1

Here’s another example of taking a HashMap, sorting by value, then converting to a List:

1 Map<Integer, String> map = new HashMap<>();
2 map.put(624642, "Zelda");
3 map.put(4556, "Legend");
4 map.put(24624, "Of");
5 List<Map.Entry<Integer, String>> sortedEntries = map.entrySet().stream

()
6 .sorted((e1, e2) -> e1.getValue().compareTo(e2.getValue()))
7 .collect(Collectors.toList());
8 System.out.println(sortedEntries);

This outputs:

1 [4556=Legend, 24624=Of, 624642=Zelda]

19



Summary 2020-06-16 13:56

Exceptions

Errors

• syntax: what you write isn’t legal code; identified by compiler
• semantic: code runs to completion but produces incorrect output; identified by testing
• runtime: causes program to end prematurely; identified through execution

– divide by zero
– accessing out of bounds element of array
– file errors

Protecting against runtime errors

• defensive programming: explicitly guard against invalid conditions

– not always applicable: some failures don’t have backup path
– need to account for all possible error conditions
– difficult to read
– poor abstraction

• exception handling: catch error states and recover or gracefully exit;

– actively protect program in case of exception

• exception: error state created by runtime error

– object created by Java to represent the error encountered
– should be reserved for unusual/unexpected cases that cannot be easily handled

try-catch statement

1 public void method(...) {
2 try {
3 // code to execute that may cause an exception
4 } catch (<ExceptionClass> varName) {
5 // code to execute to recover from exception/end gracefully
6 } finally {
7 // block of code that executes whether an exception occurred or

not
8 }
9 }

• try: attempt to execute code

20



Summary 2020-06-16 13:56

• catch: deal with particular exception, whether recover or failure
• finally: perform clean up assuming the code didn’t exit

try-with

1 public void processFile(String filename) {
2 try (BufferedReader reader = ...) {
3 ...
4 } catch (FileNotFoundException e) {
5 e.printStackTrace();
6 } catch (IOException e) {
7 e.printStackTrace();
8 }
9 }

• resource is automatically closed with try-with notation, as opposed to using
• separate finally block

Chaining

• can chain catch blocks to handle different exceptions separately

1 public void processFile(String filename) {
2 try {
3 ...
4 } catch (FileNotFoundException e) { // most specific exception
5 e.printStackTrace();
6 } catch (IOException e) { // least specific exception
7 e.printStackTrace();
8 }
9 }

Generating exceptions

• throw: respond to error state by creating an exception object

1 if (t == null) {
2 throw new NullPointerException("t is null!");
3 }

• throws: indicate a method has potential to create an exception, and doesn’t handle it

21



Summary 2020-06-16 13:56

1 class SimpleException extends Exception {} // define a new exception
extending Exception

2
3 public class InheritingExceptions {
4 public void f() throws SimpleException {
5 System.out.println("Throw SimpleException from f()");
6 throw new SimpleException();
7 }
8
9 public static void main(String[] args) {
10 InheritingExceptions sed = new InheritingExceptions();
11 try {
12 sed.f();
13 } catch (SimpleException e) {
14 System.out.println("Caught SimpleException!");
15 }
16 }
17 }

Types of Exceptions

• unchecked: inherit from Error. Can be safely ignored by programmer

– most Java exceptions are unchecked because you aren’t forced to protect against them

• checked: inherit from Exception. Must be explicitly handled by the programmer

– produces compile-time error if checked exception is ignored
– handle by:

* enclosing code that can generate exceptions in try-catch block

* declaring that a methodmay create an exception using throws clause

Design Patterns

• design pattern: description of a solution to a recurring problem in software design

Classes of Patterns

• creational: solutions to object creation; e.g. Singleton, Factory method
• structural: solutions dealing with structure of classes and relationships
• behavioural: solutions dealing with interaction among classes e.g. Strategy, template,
observer

22



Summary 2020-06-16 13:56

Singleton Pattern

• creational pattern

Figure 4: singleton

• Intent: Ensure that a class has only one instance, and provide a global point of access
• Motivation: Need to enforce single instance of a class with easy access
• Applicability: when a single instance of a class is required
• Consequences: Use with caution. Inappropriate use can produce bad design

– difficult to unit test
– canmask bad design (e.g. components know toomuch about each other)
– solves two problems at the same time: uniqueness of instance and access to instance

• Known uses: CacheManager, PrintSpooler, Runtimej

23



Summary 2020-06-16 13:56

1 class Singleton {
2 private static Singleton _instance = null;
3 private Singleton() { // <- private constructor prevents

instantiation except by class itself
4 ...
5 }
6
7 public static Singleton getInstance() {
8 if (_instance == null) {
9 _instance = new Singleton();
10 }
11 return _instance;
12 }
13 }
14
15 // Collaboration
16 class TestSingleton {
17 public void method1() {
18 X = Singleton.getInstance();
19 }
20
21 public void method2() {
22 Y = Singleton.getInstance();
23 }
24 }

Template Method

• behavioural pattern
• uses inheritance to separate generic algorithm from detailed design

24



Summary 2020-06-16 13:56

Figure 5: template_method

• Intent: family of encapsulated algorithms that can be interchanged

• Motivation: build generic components that are easy to extend and reuse

• Applicability: implement invariant parts of algorithmonce, and leave to subclass to implement
varying behaviour

• Consequences: all algorithmsmust use the same interface

• e.g. BubbleSorter

25



Summary 2020-06-16 13:56

Figure 6: bubble_sort

Strategy pattern

• behavioural pattern
• uses delegation to separate generic algorithm from detailed design

26



Summary 2020-06-16 13:56

Figure 7: strategy_uml

• Intent: define family of algorithms that can be interchanged
• Motivation: want to switch variants of algorithm at runtime
• Applicability:

– many similar classes that only differ in behaviour execution
– isolate business logic from implementation details of algorithms

• Consequences:

– able to swap algorihtms
– replace inheritance with composition
– introduce new strategies without changing context
– may overcomplicate design if small number of algorithms
– clients need to know how to select algorithms

• e.g. Google maps: transport strategy of bike, bus, taxi with different time and cost

27



Summary 2020-06-16 13:56

Figure 8: strategy_pattern

Strategies for getting to the airport

• e.g. BubbleSorter has a class implementing SortHandle that can be called to do specific
sorting methods.

Factorymethod

• creational pattern

• without factory:

– create objects in the class that needs them
– code duplication
– rigid, fragile classes
– inaccessible information
– poor abstraction

• with factory:

– define separate operation to create an object
– delegates object creation to subclasses
– abstracts object creation by using factory method
– encapsulates objects by allowing subclasses to determine what they need
– you can introduce new products without breaking client code

28

https://refactoring.guru/design-patterns/strategy


Summary 2020-06-16 13:56

– avoid tight coupling between creator and concrete products
– product creation is in one place, making it easy to maintain
– codemay becomemore complicated: lots of new subclasses to implement the pattern

• factory: general technique for manufacturing objects

• product: abstract class that generalises the objects produced by the factory

• creator: class that generalises the objects that consume products

– has an operation that invokes the factory method

Figure 9: factory

• Intent: generalise object creation. Allows client to request type of object it needs, without wor-
rying about details

• Applicability: sister classes depend on similar objects

29



Summary 2020-06-16 13:56

• Consequences: object creation in superclass decoupled from specific object required

• e.g. cross-platform UI elements

Figure 10: factory_eg

Observer pattern

• behavioural pattern
• many objects depend on the state of one subject:
• subject: important object, whose state determines actions of other classes
• observer: object that monitors the subject to respond to changes
• observer pattern decouples subject and observers using publish-subscribe communication
• useful for event-driven programs

30



Summary 2020-06-16 13:56

Figure 11: observer

• Intent: provide subscription mechanism to notify multiple objects about events that happen
to subject

• Motivation: prevent awkward information passing
• Applicability: changes to the state of one object requires changingmany other objects, and the
set of objects is not known in advance

• Consequences:

– prevents awkward information passing
– decouples subject and observer
– clear responsibilities: subjects know nothing about observers except that they exist
– establish runtime relations between observer and subject

Software Design

Javadocs

• special kind of comment that compiles to HTML
• intended for developers using your program
• documents how to use and interact with your classes andmethods

31



Summary 2020-06-16 13:56

Code Smells

• rigidity: hard to modify because changes in one class/method cascade to many others
• fragility: change one part breaks unrelated parts
• immobility: cannot decompose into reusable modules
• viscosity: hacks to preserve design
• complexity: premature optimisation; clever code currently unnecessary
• repetition: copy-paste
• opacity: convulted logic; hard to follow design

GRASP

• GRASP: guidelines for assigning responsibility to classes in object-oriented design

– how to break down a problem into modules with clear purpose

• General

• Responsibility

• Assignment

• Software

• Patterns/principles

• cohesion: classes designed to solve clear, focused problems, with methods/attributes related
to and working towards this objective

– aim for high cohesion

• coupling: degree of interaction between classes; dependency.

– aiming for low coupling

• open-closed principle: classes should be open to extension, closed to modification

– if we need to change/add functionality, use inheritance rather thanmodifying original

• abstraction: solve problems by creating abstract data types to represent problemcomponents.
In OOP use classes.

• encapsulation: details should be kept hidden/private. User’s ability to access hidden details is
restricted/controlled. Also known as information hiding.

• polymorphism: ability to use an object or method in many different ways

32



Summary 2020-06-16 13:56

• delegation: keeping classes focused by passing work on to other classes

– computations should be performed in the class with the greatest amount of relevant infor-
mation

Testing

• unit: small, well-defined component of a software system with one/small number of responsi-
bilities

• unit test: verify operation of a unit by testing single use case
• unit testing: identifying bugs by subjecting all units to a suite of tests
• manual testing: ad-hoc manual tests. Difficult to reach edge cases. Not scalable
• automated testing: testing via automated testing software. Faster, reliable, less reliant on hu-
mans

– easy to set up
– scalable
– repeatable
– not human intensive
– powerful
– finds bugs

• software tester: conducts tests on software to find and eliminate bugs
• software quality assurance: works to improve development process/lifecycle. Directs soft-
ware testers to conduct tests

JUnit testing

• assert: true/false statement indicating success/failure of test case
• TestCase: class dedicated to testing single unit
• TestRunner: class that executes tests on a unit

1 import static org.junit.Assert.*;
2 import org.junit.Test;
3
4 public class BoardTest {
5 @Test
6 public void testBoard() {
7 Board board = new Board();
8 assertEquals(board.cellIsEmpty(0, 0), true);
9 }
10

33



Summary 2020-06-16 13:56

11 @Test
12 public void testValidMove() {
13 Board board = new Board();
14 Move move = new Move(0, 0);
15 assertEquals(board.isValidMove(move), true);
16 }
17
18 @Test
19 public void testMakeMove() {
20 Board board = new Board();
21 Player player = new HumanPlayer("R");
22 Move move = new Move(0, 0);
23 board.makeMove(player, move);
24 assertEquals(board.getBoard()[move.row][move.col], "r");
25 }
26 }

1 import org.junit.runner.JUnitCore;
2 import org.junit.runner.Result;
3 import org.junit.runner.notification.Failure;
4
5 public class TestRunner {
6 public static void main(String[] args) {
7 Result result = JUnitCore.runClasses(BoardTest.class);
8 for (Failure failure : result.getFailures()) {
9 System.out.println(failure.toString());
10 }
11 System.out.println(result.wasSuccessful());
12 }
13 }

Event Programming

• sequential programming: program is run top to bottom

– useful for static programs with constant unchangeable logic
– execution roughly the same every time
– not dynamic

• state: properties that define an object
• event: created when state of an object/device/… is altered
• callback: method triggered by an event
• event-driven programming: use events and callbacks to control flow of program execution
e.g. exception handling, observer pattern

– better encapsulate classes by hiding behaviour
– avoid explicitly sending information about input, pass it as part of callback

34



Summary 2020-06-16 13:56

– add/remove behaviour easily
– add/remove responses easily
– e.g. GUI, web development, embedded systems/hardware

• event loop/polling: infinite loop checking whether an event has occurred

– lots of waiting
– lots of wasted effort
– always responds in same order
– cannot escape onemethod to respond to something more urgent

• interrupt: signal generated by hardware/software indicating an event that requires immediate
CPU attention

– e.g. exception/error handling
– e.g. repeat event on timed interval
– e.g. device input: key press on keyboard

• interrupt service routine: event-handling code to respond to interrupt signals

Composition over inheritance

• entity-component approach is an example of composition over inheritance
• simplifies things by using composition instead of inheritance
• prevent you being restricted into an inflexible class hierarchy
• allows you to mix and match behaviour as needed e.g. ZombieWerewolf cannot inherit from
both Zombie and Werewolfwhile it will exhibit behaviours from both

• creates much simpler andmore flexible design
• minimises code duplication

35



Summary 2020-06-16 13:56

Figure 12: composition-vs-inheritance

Enumerated types

• enum: class consisting of a finite list of named constants

– used any time you need to represent a fixed set of values
– ordinal(): gives you the position of enum in the class (0-based)

1 public enum Suit {
2 SPADES(Colour.BLACK),
3 CLUBS(Colour.BLACK),
4 DIAMONDS(Colour.RED),
5 HEARTS(Colour.RED);
6
7 private Colour colour;
8 private Suit(Colour colour) {
9 this.colour = colour;
10 }
11 }

36



Summary 2020-06-16 13:56

Variadic Parameters

• variadic method: method taking an unknown number of arguments

– implicitly convert input arguments to an array

1 public String concatenate(String... strings) {
2 String string= "";
3 for (String s : strings) {
4 string += s;
5 }
6 return string;
7 }

Functional interface

• functional interface: interface containing only a single abstract method

– aka Single Abstract Method interface
– can contain only one new non-static method

Predicate

1 public interface Predicate<T>

• represents a predicate, accepting one argument and returning a boolean
• executes boolean test(T t)method on a single object
• can be combined with other predicates using logical operation methods

Unary operator

1 public interface UnaryOperator<T>

• represents unary (single argument) function accepting one argument and returning an object
of the same type

• executes T apply(T t)method on a single object

Lambda expressions

• lambda expression: treats code as data that can be used as an object

37



Summary 2020-06-16 13:56

– allows you to instantiate an interface without implementing it
– allows you to pass a function as an argument to a function
– instances of functional interfaces
– make code neater and easier to read
– can often be used in place of anonymous classes, but are not the same

1 Predicate<Integer> p = i -> i > 0; // very compact way to define
function

Syntax:

1 (sourceVar1, sourceVar2, ...) -> <operation on source variables>

Method References

• method reference: an object that stores a method; can take the place of a lambda expression
if lamdba expression only calls a single method

1 UnaryOperator<String> operator = s -> s.toLowerCase();
2 UnaryOperator<String> operator = String::toLowerCase;

Streams

• stream: series of elements given in sequence, automatically put through a pipeline of opera-
tions

– map: apply a function element-wise
– filter: select elements with a condition
– limit: perform amaximum number of iterations
– collect: gather elements for output
– reduce: perform aggregation into a single value

e.g.

1 String output = people.stream()
2 .filter(p -> p.getAge() >= 18)
3 .filter(p -> p.getAge() <= 40)
4 .map(Person::getName)
5 .map(string::toUpperCase)
6 .collect(Collectors.joining(", "));

38



Summary 2020-06-16 13:56

Scanner

• only ever create one instance of Scanner in a program
• next returns next complete token (up to next delimiter)
• nextLine is the only method that eats newline characters
• Scanner does not automatically downcast (e.g. float to int)
• sometimes you need to follow nextXXXwith nextLine if input is across multiple lines

1 import java.util.Scanner;
2
3 public class ScannerProgram {
4 public static void main(String[] args) {
5 Scanner scanner = new Scanner(System.in); // create Scanner

reading from System.in
6 System.out.println("Enter your input: ");
7 while (scanner.hasNextLine()) { // while there are more

lines to read
8 String s = scanner.nextLine(); // read the next line
9 System.out.println(s);
10 }
11 }
12 }

Reading files

1 import java.io.FileReader; // low level file for simple character
reading

2 import java.io.BufferedReader; // higher level file object that reads
Strings

3 import java.io.IOException; // handle exceptions
4
5 public class ReadFile {
6 public static void main(String[] args) {
7 try (BufferedReader br = new BufferedReader(new FileReader("

test.txt"))) {
8 String text;
9 while ((text = br.readLine()) != null) {
10 // do stuff with text
11 }
12 } catch (Exception e) {
13 e.printStackTrace();
14 }
15 }
16 }

• can also use Scanner to read a file, parsing as well as reading the text

39



Summary 2020-06-16 13:56

– slower, smaller buffer, but works for small files

Packages

Defining a package

First statement in class as follows:

1 package <directory_name_1>.<directory_name_2>;

Using packages

1 import <packageName>.*; // import all classes in package
2 import <packageName>.<className>; // import particular class

• Parent directory of <packageName>must be in CLASSPATH environment variable

Default package

• all classes in current directory belong to unnamed default package, that is implicitly included

40


	Summary
	Table of Contents
	Compiling and running
	Java features
	Java Identifiers
	Classes
	Wrapper classes
	Object Oriented Features
	Static Members
	Mutability
	Standard Methods
	Visibility Modifiers
	Motivation for Inheritance and Polymorphism
	Inheritance
	Access control
	Abstract vs Concrete classes
	Object class

	Interfaces
	Sorting
	Inheritance vs Interfaces

	Polymorphism
	Generics
	Tuple
	Subtyping
	Generic Methods

	Collections
	Common Operations
	Hierarchy
	ArrayList
	Comparator

	Maps
	Common operations
	Hierarchy
	Use of HashMap
	Sorting with Maps

	Exceptions
	Errors
	Protecting against runtime errors
	try-catch statement
	try-with
	Chaining
	Generating exceptions
	Types of Exceptions

	Design Patterns
	Classes of Patterns
	Singleton Pattern
	Template Method
	Strategy pattern
	Factory method
	Observer pattern

	Software Design
	Javadocs
	Code Smells
	GRASP

	Testing
	JUnit testing

	Event Programming
	Composition over inheritance
	Enumerated types
	Variadic Parameters
	Functional interface
	Predicate
	Unary operator

	Lambda expressions
	Method References
	Streams
	Scanner
	Reading files
	Packages
	Defining a package
	Using packages
	Default package



