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• Streams
• Scanner
• Reading files
• Packages

– Defining a package
– Using packages
– Default package

Compiling and running

1 # compile
2 $ javac HelloWorld.java
3 # compiler outputs HelloWorld.class
4 # run (no extension)
5 $ java HelloWorld

Java features

1. compiled and interpreted
2. platform independent
3. object oriented
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Figure 1: java_compiled_and_interpreted

• Java is compiled to bytecode, then interpreted to machine code
• that bytecode is portable: you can take it to any machine
• porting Java to a new system involves writing a JVM implementation for that system
• most modern implementations of the JVM use just-in-time compilation

Java Identifiers

• rules:

– must not start with a digit
– all characters must be in {letters, digits, underscore}
– can theoretically be of any length
– are case-sensitive

• convention:

– camelCase for variables, methods, objects
– class names use capitalised CamelCase
– constants use UPPER_CASE with underscore
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Classes

• class: fundamental unit of abstraction in OOP. Represents an entity, whether physical or ab-
stract that is part of the problem.

– defines a new data type containing attributes and methods that provides a template to
generalise things with common properties

• object: specific, concrete example of a class
• instance: object that exists in your code
• this: reference to object itself
• super: reference to object’s parent class
• final: indicates an attribute, method, or class can only be assigned, declared, or defined
once

Wrapper classes

• primitive: unit of information containing only data, with no attributes or methods
• wrapper: class providing extra functionality to primitive data types, allowing them to behave
like objects

• un/boxing: process of converting a primitive to/from equivalent wrapper class

Object Oriented Features

• dataabstraction: techniqueof creatingnewdata typeswell suited toanapplicationbydefining
new classes, comprised of:

– attributes: data an object can contain
– methods: actions an object can perform

• encapsulation: ability to group attributes and methods that manipulate those attributes as a
single entity, by defining a class

– not provided by procedural programming paradigm
– packages: grouping of classes and interfaces into bundles that can be handled together,
allowing reuse of code, control of namespace, and access control

* another example of encapsulation

• information hiding: ability to hide details of a class from the outside world

– allows you to modify implementation without affecting interface
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– access control: prevent outside class from manipulating properties of another class in
undesired ways

• delegation: association relationship; “has a”. Class delegates responsibilities to another class

– e.g. Point inside a Circle class representing the centre

• inheritance: form of abstraction that allows you to generalise similar attributes and methods
of classes. Allows code reuse

• polymorphism: ability to process objects differently depending on their data type or class

Static Members

• static member: method/attribute not specific to an object of the class
• static variable: variable shared among all objects of the class, i.e. a single instance is shared
among classes. Accessed using class name.

• static method: method that does not depend on (access or modify) any instance variables of
the class. Invoked using the class name

– can only call other static methods
– can only access static data
– cannot refer to this, super as they are related to objects

Mutability

• mutable: a class is mutable if it contains public mutator methods that can change instance
variables

• immutable: a class with nomethods that can change instance variables (except constructors)

Standard Methods

• equals: allows object comparison (implemented as dictated by the needs of the class)
• toString: produces a string representation of an object
• copy: creates a separate copy of the object provided as input; should be a deep copy

Visibility Modifiers

• access control

– safely seals data in capsule of class
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– prevents programmers from relying on details of class implementation
– helps protect against accidental/wrong usage
– keeps code elegant, clean, making maintenance easier
– provides access to an object through a clean interface

• public: available/visible everywhere (within/outside the class)

– anyone can use it

• private: only visiblewithin a class

– methods/attributes
– not visible within subclasses
– not inherited

• protected: only visible within class, subclasses, and all classes in the same package

– methods/attributes
– visible to subclasses in other packages

• default: visibility modifier omitted;

– can be accessed within other classes in the same package, but not from outside the pack-
age

Modifier Class Package Subclass Outside

public Y Y Y Y

protected Y Y Y N

default Y Y N N

private Y N N N

Motivation for Inheritance and Polymorphism

• without inheritance/polymorphism

– repeated code: hard to implement/debug/maintain
– doesn’t represent similarity/relationship between entities
– difficult to extend
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Inheritance

• superclass: parent/base class in inheritance relationship, providing general information to
child classes

• subclass: derived/child class in inheritance relationship, inheriting common attributes and
methods from parent class. More specific form of superclass

– subclasses contain all public/protected instance variables/methods in base class

• extends: indicates one class inherits from another

1 public class Subclass extends Superclass { ... }

• represents an is a relationship (associaton)

Access control

• child classes cannot call private methods, and cannot access private attributes of parent
classes

• child classes can call protected methods, and can access protected attributes of parent
classes

• privacy leak: child classesmodifyingprotectedattributesof parent class canproduceprivacy
leaks, as these modifications won’t be subject to any validation checks, potentially producing
invalid state

– preferable for parent class to access attributes through public/protectedmethods of
parent class

• protectedmethods: use whenmethods will only be used by subclasses
• child class cannot further restrict visibility of an overriddenmethod:

– public in parent: public in child
– protected in parent: protected or public
– privatemethod cannot be overridden

• shadowing: variables declaredwith the samename in overlapping scopes, e.g. in subclass and
superclass. Variable accessed depends on reference type rather than the object.

– avoid doing it. Define common variables in the superclass.

• getClass: returns object of type Class representing details of calling object’s class
• instanceof: operator that returnstrue if an object A is an instance of the same class as object
B, or a class that inherits from B:
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1 new Rook() instanceof Piece; // true
2 new Piece() instanceof Rook; // false

• upcast: object of a child class is assigned to variable of ancestor class
• downcast: object of an ancestor class is assigned to a variable of a child class

– only works if underlying object is actually of that class
– use with care! Lots of downcasting is a smell

• abstract method: defines superclass method common to all subclasses with no implementa-
tion. Each subclass then implements the method via overriding.

– <visibility> abstract <returnType> <methodName>(<args>);
– classes with abstract methods must be abstract

• abstract class: defines an incomplete class

– General concepts that are not fully realised but provides useful grouping, with specific de-
tails implemented in subclasses

– represent an incomplete concept than some real entity used in solving a problem
– cannot be instantiated
– <visibility> abstract class <ClassName> { ... }
– abstract classes may have abstract methods

• concrete class: class that is not abstract, that is fully defined, in terms of actions it can take.
Can be instantiated.

Abstract vs Concrete classes

Object class

• every class in Java implicitly inherits from the Object class
• all classes are of type Object
• all classes have a toStringmethod: by default prints out <class name>@<hash code>
• all classes have an equalsmethod: by default it compares references

Interfaces

• interface: declares set of constants andmethods that define the behaviour of an object

– represents a can do relationship
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– usually named <...>able, relating to an action
– e.g. classes implementing <Drivable> interface implement drivemethod
– methods never have any code
– all methods are implicitly abstract
– all attributes are implicitly static final
– all methods/attributes are implicilty public

1 public interface Printable {
2 int MAXIMUM_PIXEL_DENSITY = 1000;
3 void print();
4 }

• implements: declare that a class implements all functionality defined by an interface

– concrete classes must implement all methods, otherwise they must be abstract

1 public class Image implements Printable {
2 public void print() { ... }
3 }
4
5 public class Spreadsheet implements Printable {
6 public void print() { ... }
7 }

• default method: you can define default behaviour of interface that can be subsequently over-
ridden

1 public interface Printable {
2 default void print() {
3 System.out.println(this.toString());
4 }
5 }

• interfaces can be extended like classes, forming the same is a relationship

1 public interface Digitisable extends Printable {
2 public void digitise();
3 }

• classes can inherit only one class, but can implement multiple interfaces: allows you to build
powerful abstractions, making it much easier to create solutions

1 public class Spreadsheet extends Document implements Printable,
Colourable, Filterable,

2 Comparable<Spreadsheet> {
3 public void print() { ... }
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4 ...
5 }

Sorting

• Classes implementing Comparable<ClassName> interface

– can be compared with objects of same class
– must implement public int compareTo(<ClassName> object)
– allows them to be sorted without needing to implement sorting algorithms yourself

• compareTo: compares object A to object B

– Bmay be a subclass of A as long as they both implement Comparable
– returns < 0 if this A < argument B
– returns 0 if this A = argument B
– returns > 0 if this A > argument B

Inheritance vs Interfaces

• inheritance: generalises shared properties between similar classes, is a

• interfaces: generalise shared behaviour between potentially dissimilar classes, can do

• subtype polymorphism applies to interfaces and inheritance:

1 // inheritance
2 Robot robot = new WingedRobot(...);
3 // interfaces
4 Comparable<Robot> comparable = new Robot(...);

• All Animals including Dogs and Cats can make noise: inheritance, as Dog and Cat are clearly
related and will share common properties

• All Animals and Vehicles can make noise: interface, as no similarity between Animal and
Vehicle

• All classes can be compared with themselves: Comparable interface
• Some GameObjects can move, some can talk, some can be opened, some can attack: inter-
faces Movable, Talkable, Attackable implemented by particular classes inheriting from
GameObject
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Polymorphism

• polymorphism: ability to use objects/methods in many different ways (many forms)
• method overloading: ability to define method with the same name but different signatures.
Superclass methods can be overloaded in subclasses

– ad hoc polymorphism

• method overriding: declaring a method that exists in a superclass again in a subclass with
identical signature. Methods can only be overridden by subclasses

– subtype polymorphism
– extend/modify functionality of parent
– makes subclass behaviour available when using superclass references
– defines interface in superclass with particular behaviour implemented in subclass
– uses @Override annotation optionally
– cannot change return type
– privatemethods cannot be overridden
– finalmethods cannot be overridden

• substitution: use subclasses in place of superclasses

– subtype polymorphism

• generics: parametrised methods/classes

– parametric polymorphism

Generics

• facilitate code re-use by enabling generic logic to be written to apply to any class type
• generic class: class defined with an arbitrary type for a field, parameter or return type

– type parameter can have any reference type plugged in (any class type)

• limitations:

– cannot instantiate parametrised objects
– cannot create arrays of parametrised objects

• benefits:

– flexibility to reuse code for any type
– allow objects to keep their type (rather than be upcast to Object)
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– allows compiler to detect errors during development rather than producing run-time er-
rors

1 T item = new T(); // <- cannot do this!
2 T[] elements = new T[]; // <- cannot do this!

1 public class Sample<T> {
2 private T data;
3
4 public void setData(T data) {
5 this.data = data;
6 }
7
8 public T getData() {
9 return data;
10 }
11 }

Tuple

From Thinking in Java

1 public class TwoTuple<A, B> {
2 public final A first;
3 public final B second;
4
5 public TwoTypePair(A first, B second) {
6 this.first = first;
7 this.second = second;
8 }
9
10 @Override
11 public String toString() {
12 return "(" + first + ", " + second ")";
13 }
14 }

Usage:

1 public class TwoTupleDemo {
2 public static void main(String[] args) {
3 TwoTuple<String, Integer> rating = new TwoTuple<String, Integer

>("The Car Guys", 8);
4 System.out.println(rating);
5 }
6 }
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Subtyping

• generic subtyping: generic classes/interfaces are not related merely because the type param-
eters are related

– e.g. List<Dog> is not a subtype of List<Animal>
– in general: T1<X> <: T2<X> if T1 <: T2
– <: : is subtype of
– e.g.ArrayList<String> is subtype ofList<String> asArrayList is subtype ofList
:

1 ArrayList<String> arrayListStr = new ArrayList<String>();
2 List<String> listStr = arrayListStr;

• generic wildcard: allows you to read and insert to a generic collection

1 List<?> listUnknown = new ArrayList<A>(); // unknown wildcard
2 List<? extends A> listUnknown = new ArrayList<A>(); // extends wildcard
3 List<? super A> listUnknown = new ArrayList<A>(); // super wildcard

• unknownwildcard: list typed to unknown type; can only read the collection

– read-only collection

• extends wildcard: List<? extends A>means list of objects of type A or subclass of A

– we can read the list and cast elements to type A
– read-only collection

• super wildcard: List<? superA>means list of objects of type A or superclass of A

– safe to insert elements of type A or subclasses of A

1 public void insert(List<? super Animal> myList) {
2 myList.add(new Dog());
3 myList.add(newBear());
4 }
5
6 List<Animal> animals = new ArrayList<Animal>();
7 insert(animals);
8 Object o = animals.get(0); // upcast to object. Works
9 Animal a = animals.get(0); // downcast to animal; error as list could

be of type that is
10 // superclass of animal
11
12 List<Object> objects = new ArrayList<Object>();
13 insert(objects); // this is fine. Object is a superclass of Animal
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Generic Methods

• generic method: method that accepts arguments or returns objects of arbitrary type

– can be defined in any class
– type parameter is local to the method

1 public <T> int genericMethod(T arg); // generic argument
2 public <T> T genericMethod(String name); // generic return value
3 public <T> T genericMethod(T arg); // generic arg + return val
4 public <T,S> T genericMethod(S arg); // generic arg + return val

Collections

• Collections: framework that permits storing, accessing, manipulating lists

– ordered collection

• most useful:

– ArrayList: improved arrays
– HashSet: ensure unique elements
– PriorityQueue: order elements non-trivially
– TreeSet: fast lookup/search for unique elements

Common Operations

• length: int size()
• presence: boolean contains(Object element)

– requires implementation of equals(Object element)

• add: boolean add(E element)
• remove: boolean remove(Object element)
• iterating: Iterator<E> iterator()

– for (T t : Collection<t>)

• retrieval: Object get(int index)
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Hierarchy

Figure 2: java_collections

ArrayList

• class with an array as an instance variable
• iterable (for-each loops)
• handles resizing automatically
• allows you to insert, remove, get, modify, …
• has toString available
• easily sorted if stored element class implements Comparable<T> interface

– sorting invoked by Collections.sort(list);

• can be used for storing different types of objects that inherit from the same base class: allows
seamless execution of common behaviour; you can simply apply the commonmethod to every
itemwithout having to worry about what type of class it is

• cannot be directly indexed
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• limitations:

– doesn’t shrink automatically: can use excessive memory; trimToSize()
– cannot store primitives

Comparator

• implement different sorting approaches by implementing Comparator<T> interface

– requires implementation of compare(T obj1, T obj2);, behaving similar to
compareTo

– can invoke as Collections.sort(list, new Comparator<T>(){ ... });, where
the Comparator is implemented as an ___anonymous inner class‘

Maps

• Maps: framework that permits storing, accessing, manipulating key-value pairs

Common operations

• Length: int size()
• Presence: boolean containKey(Object key)

– boolean containValue(Object value)

• Add/replace: boolean put(K key, V value)
• Remove: ‘boolean remove(Object key)
• Iterating: Set<K> keySet()
• Iterating: Set<Map.Entry<K,V>> entrySet()
• Retrieval V get(Object key)
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Hierarchy

Figure 3: java_map

Use of HashMap

1 import java.util.HashMap;
2
3 public static void main(String[] args) {
4 HashMap<String,Book> library = new HashMap<>();
5 Book b1 = new Book("JRR Tolkien", "The Lord of the Rings", 1178);
6 Book b2 = new Book("George RR Martin", "A Game of Thrones", 694);
7 library.put(b1.author, b1);
8 library.put(b2.author, b2);
9
10 for (String author: library.keySet()) {
11 Book b = library.get(author);
12 System.out.println(b);
13 }
14 }
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Sorting with Map s

Here’s an example of sorting a HashMap by value, in reverse order, and printing the result:

1 public class Program {
2 public static void main(String[] args) {
3 Map<String, Integer> map = new HashMap<>();
4 map.put("orange", 1);
5 map.put("potato", 2);
6 map.put("banana", 5);
7 map.put("pineapple", 4);
8 map.put("apple", 3);
9 map.put("blueberry", 6);
10
11 map.entrySet()
12 .stream()
13 .sorted(Collections.reverseOrder(Map.Entry.

comparingByValue()))
14 .forEach(System.out::println);
15
16 }
17 }

Output:

1 blueberry=6
2 banana=5
3 pineapple=4
4 apple=3
5 potato=2
6 orange=1

Here’s another example of taking a HashMap, sorting by value, then converting to a List:

1 Map<Integer, String> map = new HashMap<>();
2 map.put(624642, "Zelda");
3 map.put(4556, "Legend");
4 map.put(24624, "Of");
5 List<Map.Entry<Integer, String>> sortedEntries = map.entrySet().stream

()
6 .sorted((e1, e2) -> e1.getValue().compareTo(e2.getValue()))
7 .collect(Collectors.toList());
8 System.out.println(sortedEntries);

This outputs:

1 [4556=Legend, 24624=Of, 624642=Zelda]
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Exceptions

Errors

• syntax: what you write isn’t legal code; identified by compiler
• semantic: code runs to completion but produces incorrect output; identified by testing
• runtime: causes program to end prematurely; identified through execution

– divide by zero
– accessing out of bounds element of array
– file errors

Protecting against runtime errors

• defensive programming: explicitly guard against invalid conditions

– not always applicable: some failures don’t have backup path
– need to account for all possible error conditions
– difficult to read
– poor abstraction

• exception handling: catch error states and recover or gracefully exit;

– actively protect program in case of exception

• exception: error state created by runtime error

– object created by Java to represent the error encountered
– should be reserved for unusual/unexpected cases that cannot be easily handled

try-catch statement

1 public void method(...) {
2 try {
3 // code to execute that may cause an exception
4 } catch (<ExceptionClass> varName) {
5 // code to execute to recover from exception/end gracefully
6 } finally {
7 // block of code that executes whether an exception occurred or

not
8 }
9 }

• try: attempt to execute code
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• catch: deal with particular exception, whether recover or failure
• finally: perform clean up assuming the code didn’t exit

try-with

1 public void processFile(String filename) {
2 try (BufferedReader reader = ...) {
3 ...
4 } catch (FileNotFoundException e) {
5 e.printStackTrace();
6 } catch (IOException e) {
7 e.printStackTrace();
8 }
9 }

• resource is automatically closed with try-with notation, as opposed to using
• separate finally block

Chaining

• can chain catch blocks to handle different exceptions separately

1 public void processFile(String filename) {
2 try {
3 ...
4 } catch (FileNotFoundException e) { // most specific exception
5 e.printStackTrace();
6 } catch (IOException e) { // least specific exception
7 e.printStackTrace();
8 }
9 }

Generating exceptions

• throw: respond to error state by creating an exception object

1 if (t == null) {
2 throw new NullPointerException("t is null!");
3 }

• throws: indicate a method has potential to create an exception, and doesn’t handle it
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1 class SimpleException extends Exception {} // define a new exception
extending Exception

2
3 public class InheritingExceptions {
4 public void f() throws SimpleException {
5 System.out.println("Throw SimpleException from f()");
6 throw new SimpleException();
7 }
8
9 public static void main(String[] args) {
10 InheritingExceptions sed = new InheritingExceptions();
11 try {
12 sed.f();
13 } catch (SimpleException e) {
14 System.out.println("Caught SimpleException!");
15 }
16 }
17 }

Types of Exceptions

• unchecked: inherit from Error. Can be safely ignored by programmer

– most Java exceptions are unchecked because you aren’t forced to protect against them

• checked: inherit from Exception. Must be explicitly handled by the programmer

– produces compile-time error if checked exception is ignored
– handle by:

* enclosing code that can generate exceptions in try-catch block

* declaring that a methodmay create an exception using throws clause

Design Patterns

• design pattern: description of a solution to a recurring problem in software design

Classes of Patterns

• creational: solutions to object creation; e.g. Singleton, Factory method
• structural: solutions dealing with structure of classes and relationships
• behavioural: solutions dealing with interaction among classes e.g. Strategy, template,
observer
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Singleton Pattern

• creational pattern

Figure 4: singleton

• Intent: Ensure that a class has only one instance, and provide a global point of access
• Motivation: Need to enforce single instance of a class with easy access
• Applicability: when a single instance of a class is required
• Consequences: Use with caution. Inappropriate use can produce bad design

– difficult to unit test
– canmask bad design (e.g. components know toomuch about each other)
– solves two problems at the same time: uniqueness of instance and access to instance

• Known uses: CacheManager, PrintSpooler, Runtimej
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1 class Singleton {
2 private static Singleton _instance = null;
3 private Singleton() { // <- private constructor prevents

instantiation except by class itself
4 ...
5 }
6
7 public static Singleton getInstance() {
8 if (_instance == null) {
9 _instance = new Singleton();
10 }
11 return _instance;
12 }
13 }
14
15 // Collaboration
16 class TestSingleton {
17 public void method1() {
18 X = Singleton.getInstance();
19 }
20
21 public void method2() {
22 Y = Singleton.getInstance();
23 }
24 }

Template Method

• behavioural pattern
• uses inheritance to separate generic algorithm from detailed design
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Figure 5: template_method

• Intent: family of encapsulated algorithms that can be interchanged

• Motivation: build generic components that are easy to extend and reuse

• Applicability: implement invariant parts of algorithmonce, and leave to subclass to implement
varying behaviour

• Consequences: all algorithmsmust use the same interface

• e.g. BubbleSorter
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Figure 6: bubble_sort

Strategy pattern

• behavioural pattern
• uses delegation to separate generic algorithm from detailed design
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Figure 7: strategy_uml

• Intent: define family of algorithms that can be interchanged
• Motivation: want to switch variants of algorithm at runtime
• Applicability:

– many similar classes that only differ in behaviour execution
– isolate business logic from implementation details of algorithms

• Consequences:

– able to swap algorihtms
– replace inheritance with composition
– introduce new strategies without changing context
– may overcomplicate design if small number of algorithms
– clients need to know how to select algorithms

• e.g. Google maps: transport strategy of bike, bus, taxi with different time and cost
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Figure 8: strategy_pattern

Strategies for getting to the airport

• e.g. BubbleSorter has a class implementing SortHandle that can be called to do specific
sorting methods.

Factorymethod

• creational pattern

• without factory:

– create objects in the class that needs them
– code duplication
– rigid, fragile classes
– inaccessible information
– poor abstraction

• with factory:

– define separate operation to create an object
– delegates object creation to subclasses
– abstracts object creation by using factory method
– encapsulates objects by allowing subclasses to determine what they need
– you can introduce new products without breaking client code

28
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– avoid tight coupling between creator and concrete products
– product creation is in one place, making it easy to maintain
– codemay becomemore complicated: lots of new subclasses to implement the pattern

• factory: general technique for manufacturing objects

• product: abstract class that generalises the objects produced by the factory

• creator: class that generalises the objects that consume products

– has an operation that invokes the factory method

Figure 9: factory

• Intent: generalise object creation. Allows client to request type of object it needs, without wor-
rying about details

• Applicability: sister classes depend on similar objects
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• Consequences: object creation in superclass decoupled from specific object required

• e.g. cross-platform UI elements

Figure 10: factory_eg

Observer pattern

• behavioural pattern
• many objects depend on the state of one subject:
• subject: important object, whose state determines actions of other classes
• observer: object that monitors the subject to respond to changes
• observer pattern decouples subject and observers using publish-subscribe communication
• useful for event-driven programs
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Figure 11: observer

• Intent: provide subscription mechanism to notify multiple objects about events that happen
to subject

• Motivation: prevent awkward information passing
• Applicability: changes to the state of one object requires changingmany other objects, and the
set of objects is not known in advance

• Consequences:

– prevents awkward information passing
– decouples subject and observer
– clear responsibilities: subjects know nothing about observers except that they exist
– establish runtime relations between observer and subject

Software Design

Javadocs

• special kind of comment that compiles to HTML
• intended for developers using your program
• documents how to use and interact with your classes andmethods
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Code Smells

• rigidity: hard to modify because changes in one class/method cascade to many others
• fragility: change one part breaks unrelated parts
• immobility: cannot decompose into reusable modules
• viscosity: hacks to preserve design
• complexity: premature optimisation; clever code currently unnecessary
• repetition: copy-paste
• opacity: convulted logic; hard to follow design

GRASP

• GRASP: guidelines for assigning responsibility to classes in object-oriented design

– how to break down a problem into modules with clear purpose

• General

• Responsibility

• Assignment

• Software

• Patterns/principles

• cohesion: classes designed to solve clear, focused problems, with methods/attributes related
to and working towards this objective

– aim for high cohesion

• coupling: degree of interaction between classes; dependency.

– aiming for low coupling

• open-closed principle: classes should be open to extension, closed to modification

– if we need to change/add functionality, use inheritance rather thanmodifying original

• abstraction: solve problems by creating abstract data types to represent problemcomponents.
In OOP use classes.

• encapsulation: details should be kept hidden/private. User’s ability to access hidden details is
restricted/controlled. Also known as information hiding.

• polymorphism: ability to use an object or method in many different ways
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• delegation: keeping classes focused by passing work on to other classes

– computations should be performed in the class with the greatest amount of relevant infor-
mation

Testing

• unit: small, well-defined component of a software system with one/small number of responsi-
bilities

• unit test: verify operation of a unit by testing single use case
• unit testing: identifying bugs by subjecting all units to a suite of tests
• manual testing: ad-hoc manual tests. Difficult to reach edge cases. Not scalable
• automated testing: testing via automated testing software. Faster, reliable, less reliant on hu-
mans

– easy to set up
– scalable
– repeatable
– not human intensive
– powerful
– finds bugs

• software tester: conducts tests on software to find and eliminate bugs
• software quality assurance: works to improve development process/lifecycle. Directs soft-
ware testers to conduct tests

JUnit testing

• assert: true/false statement indicating success/failure of test case
• TestCase: class dedicated to testing single unit
• TestRunner: class that executes tests on a unit

1 import static org.junit.Assert.*;
2 import org.junit.Test;
3
4 public class BoardTest {
5 @Test
6 public void testBoard() {
7 Board board = new Board();
8 assertEquals(board.cellIsEmpty(0, 0), true);
9 }
10
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11 @Test
12 public void testValidMove() {
13 Board board = new Board();
14 Move move = new Move(0, 0);
15 assertEquals(board.isValidMove(move), true);
16 }
17
18 @Test
19 public void testMakeMove() {
20 Board board = new Board();
21 Player player = new HumanPlayer("R");
22 Move move = new Move(0, 0);
23 board.makeMove(player, move);
24 assertEquals(board.getBoard()[move.row][move.col], "r");
25 }
26 }

1 import org.junit.runner.JUnitCore;
2 import org.junit.runner.Result;
3 import org.junit.runner.notification.Failure;
4
5 public class TestRunner {
6 public static void main(String[] args) {
7 Result result = JUnitCore.runClasses(BoardTest.class);
8 for (Failure failure : result.getFailures()) {
9 System.out.println(failure.toString());
10 }
11 System.out.println(result.wasSuccessful());
12 }
13 }

Event Programming

• sequential programming: program is run top to bottom

– useful for static programs with constant unchangeable logic
– execution roughly the same every time
– not dynamic

• state: properties that define an object
• event: created when state of an object/device/… is altered
• callback: method triggered by an event
• event-driven programming: use events and callbacks to control flow of program execution
e.g. exception handling, observer pattern

– better encapsulate classes by hiding behaviour
– avoid explicitly sending information about input, pass it as part of callback
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– add/remove behaviour easily
– add/remove responses easily
– e.g. GUI, web development, embedded systems/hardware

• event loop/polling: infinite loop checking whether an event has occurred

– lots of waiting
– lots of wasted effort
– always responds in same order
– cannot escape onemethod to respond to something more urgent

• interrupt: signal generated by hardware/software indicating an event that requires immediate
CPU attention

– e.g. exception/error handling
– e.g. repeat event on timed interval
– e.g. device input: key press on keyboard

• interrupt service routine: event-handling code to respond to interrupt signals

Composition over inheritance

• entity-component approach is an example of composition over inheritance
• simplifies things by using composition instead of inheritance
• prevent you being restricted into an inflexible class hierarchy
• allows you to mix and match behaviour as needed e.g. ZombieWerewolf cannot inherit from
both Zombie and Werewolfwhile it will exhibit behaviours from both

• creates much simpler andmore flexible design
• minimises code duplication
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Figure 12: composition-vs-inheritance

Enumerated types

• enum: class consisting of a finite list of named constants

– used any time you need to represent a fixed set of values
– ordinal(): gives you the position of enum in the class (0-based)

1 public enum Suit {
2 SPADES(Colour.BLACK),
3 CLUBS(Colour.BLACK),
4 DIAMONDS(Colour.RED),
5 HEARTS(Colour.RED);
6
7 private Colour colour;
8 private Suit(Colour colour) {
9 this.colour = colour;
10 }
11 }
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Variadic Parameters

• variadic method: method taking an unknown number of arguments

– implicitly convert input arguments to an array

1 public String concatenate(String... strings) {
2 String string= "";
3 for (String s : strings) {
4 string += s;
5 }
6 return string;
7 }

Functional interface

• functional interface: interface containing only a single abstract method

– aka Single Abstract Method interface
– can contain only one new non-static method

Predicate

1 public interface Predicate<T>

• represents a predicate, accepting one argument and returning a boolean
• executes boolean test(T t)method on a single object
• can be combined with other predicates using logical operation methods

Unary operator

1 public interface UnaryOperator<T>

• represents unary (single argument) function accepting one argument and returning an object
of the same type

• executes T apply(T t)method on a single object

Lambda expressions

• lambda expression: treats code as data that can be used as an object
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– allows you to instantiate an interface without implementing it
– allows you to pass a function as an argument to a function
– instances of functional interfaces
– make code neater and easier to read
– can often be used in place of anonymous classes, but are not the same

1 Predicate<Integer> p = i -> i > 0; // very compact way to define
function

Syntax:

1 (sourceVar1, sourceVar2, ...) -> <operation on source variables>

Method References

• method reference: an object that stores a method; can take the place of a lambda expression
if lamdba expression only calls a single method

1 UnaryOperator<String> operator = s -> s.toLowerCase();
2 UnaryOperator<String> operator = String::toLowerCase;

Streams

• stream: series of elements given in sequence, automatically put through a pipeline of opera-
tions

– map: apply a function element-wise
– filter: select elements with a condition
– limit: perform amaximum number of iterations
– collect: gather elements for output
– reduce: perform aggregation into a single value

e.g.

1 String output = people.stream()
2 .filter(p -> p.getAge() >= 18)
3 .filter(p -> p.getAge() <= 40)
4 .map(Person::getName)
5 .map(string::toUpperCase)
6 .collect(Collectors.joining(", "));
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Scanner

• only ever create one instance of Scanner in a program
• next returns next complete token (up to next delimiter)
• nextLine is the only method that eats newline characters
• Scanner does not automatically downcast (e.g. float to int)
• sometimes you need to follow nextXXXwith nextLine if input is across multiple lines

1 import java.util.Scanner;
2
3 public class ScannerProgram {
4 public static void main(String[] args) {
5 Scanner scanner = new Scanner(System.in); // create Scanner

reading from System.in
6 System.out.println("Enter your input: ");
7 while (scanner.hasNextLine()) { // while there are more

lines to read
8 String s = scanner.nextLine(); // read the next line
9 System.out.println(s);
10 }
11 }
12 }

Reading files

1 import java.io.FileReader; // low level file for simple character
reading

2 import java.io.BufferedReader; // higher level file object that reads
Strings

3 import java.io.IOException; // handle exceptions
4
5 public class ReadFile {
6 public static void main(String[] args) {
7 try (BufferedReader br = new BufferedReader(new FileReader("

test.txt"))) {
8 String text;
9 while ((text = br.readLine()) != null) {
10 // do stuff with text
11 }
12 } catch (Exception e) {
13 e.printStackTrace();
14 }
15 }
16 }

• can also use Scanner to read a file, parsing as well as reading the text
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– slower, smaller buffer, but works for small files

Packages

Defining a package

First statement in class as follows:

1 package <directory_name_1>.<directory_name_2>;

Using packages

1 import <packageName>.*; // import all classes in package
2 import <packageName>.<className>; // import particular class

• Parent directory of <packageName>must be in CLASSPATH environment variable

Default package

• all classes in current directory belong to unnamed default package, that is implicitly included
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