
Workshop 5 2020-04-27 22:02

Workshop 5

Table of Contents

• Inheritance
• Abstract Classes
• Polymorphism

Inheritance

• What is inheritance?

– the ability of a child class to inherit attributes/methods of parent class
– build on top of an existing classes

• What advantages does it give us as programmers?

– useful abstraction, represent generalisation of similar objects, implementing only partic-
ulars in child class while sharing common attributes/methods

– minimise code repetition, maximise code reuse
– improve codemaintainability
– polymorphism

• What relationship does inheritance represent?

– “is a”

• What is the super keyword? Where do we typically use it?

– super refers to the parent class
– typically used to invoke amethod of the parent class, e.g. to invoke the parent constructor

• What is method overriding?

– method overriding is creating a method in a child class with the same signature as the
method in the parent class, such that you “override” the behaviour to meet the needs of
the child

• What class does every class inherit from?

– Object

• What are somemethods inherited from this class, and why do we generally replace them?

– equals(): define a meaningful equality condition, default is return false

1



Workshop 5 2020-04-27 22:02

– toString(): make ameaningful string representation for our object (default prints class
name and reference)

Abstract Classes

1 public abstract class Shape {
2 // ...
3 public abstract double getArea(); // every child must override

getArea()
4 }

• it’s possible to define an abstract class with no abstract methods
• it not possible to define an abstract method that is not in an abstract class

1. If you label a class or method as abstract, what does it do?

• class cannot be instantiated
• indicates implementation is not complete

2. What is the conceptual meaning of abstract classes?

• useful generalisation that is not attached to a real-world entity

3. How can we decide whether a class should be abstract or concrete?

• does the class represent a real-world entity?
• do themethods of the classmakemeaningful actions, or are they only being defined as a place-
holder to be properly implemented by child class?

• is the logic of the class incomplete?

Polymorphism

1. Define polymorphism.

• objects/methods may have different meaning in different contexts
• literally “many forms”
• ability to use objects/methods in many ways

2. In what ways does Java allow polymorphism?

• overloading: samemethod with various forms depending on signature

– classic example: println

• overriding: samemethod with various forms depending on class

2



Workshop 5 2020-04-27 22:02

• substitution: using subclasses in place of superclasses
• generics: class parametrised by type

3. What is upcasting, and why is it useful to be able to write code like: Piece[] pieces = new
Piece[]{new Rook(), new King(), new Queen()}

• upcasting is the process of assigning a reference to a subclass to a variable of parent-class
type

• this allowsyou to refer toagenericparent class,withoutneeding toknowwhich child class
it is in advance, making codemuchmore general

4. What is downcasting? What do you need to be aware of when using it?

• downcasting is casting a reference from a parent class to a child class
• this will only work if the original object is actually of child class type

3


	Workshop 5
	Table of Contents
	Inheritance
	Abstract Classes
	Polymorphism


