
Workshop 2: Classes and Objects 2020-03-16 23:02

Classes and Objects

Table of Contents

• Design a chair class
• Complex number

1. Describe the difference between the terms class and objects.

• class: this is a abstract data type with attributes andmethods
• object: this is an instance of a class

2. Label the different parts of the following class:

1 public class Book { // <- class definition:
singular, capitalised

2 private String title; // <- class attributes
3 private String author; // <- default value is

null if not specified
4 private String borrowedBy = null; // <- default values

for attributes
5 private boolean borrowed = false;
6 private int borrowDuration; // <- default value is

0
7
8 public Book(String author, String title) { // <- constructor
9 this.author= author;
10 this.title = title;
11 }
12
13 public void borrow(String owner, int duration) { // <- class method
14 borrowed = true;
15 borrowedBy = owner;
16 borrowDuration = duration;
17 }
18 }

3. What is the purpose of a constructor, and how do we use them?

• A constructor is used to create and initialise an object
• e.g. to initialise a new book: Book book = new Book("James", 14);

4. What does the keyword thismean? Why do we use it?

• this refers to the calling object
• used to refer to attributes/methods of the calling object, e.g. in constructors so that you
can use the same name for the constructor argument and the attribute

1



Workshop 2: Classes and Objects 2020-03-16 23:02

• sometimes people use _ as a prefix to the argument name so that you don’t need to use
this

5. What does nullmean in Java?

• it’s a constant that can be assigned to any data type in Java, indicating the variable has no
real value

• can be used to initialise variables where there is no obvious/useful choice
• null is not an object: for comparison you use normal operators == !=, not equals
method

• attempting to invoke a method on a null object will throw a Null Pointer Exception

6. For the following questions, the class definition for IntegerHolder is:

1 class IntegerHolder {
2 int value;
3 public IntegerHolder(int value) {
4 this.value = value;
5 }
6 }

Determine the output for each code snippet. a.

1 public static void increment(int input) {
2 input = input + 1;
3 }
4 public static void main(String[] args) {
5 int a = 0;
6 increment(a);
7 System.out.println(a); // prints "0" as no value is returned, and

no reference to a is passed, int is passed by value
8 }

b.

1 public static void triple(IntegerHolder integerHolder) {
2 integerHolder.value = integerHolder.value * 3;
3 }
4 public static void main(String[] args) {
5 int a = 25;
6 IntegerHolder myHolder = new IntegerHolder(a);
7 triple(myHolder);
8 System.out.println(myHolder.value); // prints "75"
9 System.out.println(a); // prints "25"
10 }

7. What are getters and setters in Java? Why are they needed?

2



Workshop 2: Classes and Objects 2020-03-16 23:02

• getters/setters are used to mutate state of an object
• access control: ensures you are modifying object per prescribed behaviour: produces a
more secure/predictable result

• you define a clean interface with which to interact/act upon an object
• hides implementation details

8. What are two special methods that every class in Java has? What do they do? (Hint: not getter-
s/setters)

• equals(): allows you to make equality comparison between two objects
• toString(): allows you to print a string representation of an object
• clone(): produce a copy of an object

9. Static attributes andmethods

• shared between all instances of a class
• c.f. global variables in C
• easy to write confusing/difficult to maintain code
• occassionally they are the write thing to do
• for variables in a method (not attributes!) you do not use private keyword
• non-static attributes/methods end up on heap (dynamic memory)
• static attributes/methods end up in static memory (similar to stack)
• useful for e.g. counting number of instances of a given class
• System.out.println("Hello"); // out is a static attribute of System
• Math.sqrt(2.0); // sqrt() is a static method of Math
• be aware compiler will say “Did you want this to be a static attribute?” when you try to
reference a non-static attribute without an instance reference

Design a chair class

• attributes

– number of legs
– material
– height
– price
– manufacturer
– owner
– chair is occupied

• methods

3



Workshop 2: Classes and Objects 2020-03-16 23:02

– get/set attribute

Complex number

• attribute

– real
– imaginary

• methods

– set real
– set imaginary
– get real
– get imaginary
– equals
– toString
– modulus
– angle

1 public class ComplexNumber {
2 private double real;
3 private double imaginary;
4
5 public ComplexNumber(double real, double imaginary) {
6 this.real = real;
7 this.imaginary = imaginary;
8 }
9
10 public double getReal() {
11 return real;
12 }
13
14 public double getImaginary() {
15 return imaginary;
16 }
17
18 public void setReal(double real) {
19 this.real = real;
20 }
21
22 public void setImaginary(double imaginary) {
23 this.imaginary = imaginary;
24 }
25
26 public double getModulus() {
27 return Math.sqrt(Math.pow(real, 2) + Math.pow(imaginary, 2));

4



Workshop 2: Classes and Objects 2020-03-16 23:02

28 }
29
30 public boolean equals(ComplexNumber c) {
31 return Double.compare(this.real, c.real) == 0 && Double.compare

(this.imaginary, c.imaginary) == 0;
32 }
33 }

Can a class have multiple parent classes? - Java says no, diamond problem (see wiki

5

https://en.wikipedia.org/wiki/Multiple_inheritance

	Classes and Objects
	Table of Contents
	Design a chair class
	Complex number


