
Classes and Objects 2020-03-10 10:07

Classes and Objects

Table of Contents

• OOP overview

– Classes
– Objects

• Object Oriented Features
• Class definition
• Class instantiation
• Garbage collection
• Using instance variables andmethods
• mainmethod
• Example: Drinking glass
• Getters and Setters
• Constructors
• Method Overloading
• this
• Static Attributes and Methods

– Static variables example
– Instance vs static variables
– Static Methods

• Standard Methods

– equals
– toString
– copy

• Operator Overloading
• Packages in Java

– Package creation
– Using packages
– default package (Non-assessable)

• Information Hiding

– Visibility modifiers
– Circle class with visibility modifiers

1

Classes and Objects 2020-03-10 10:07

• Mutability
• Delegation through Association
• Wrapper Classes

– Integer class

OOP overview

• All programming languages have

– calculation
– selection
– iteration
– abstraction

• abstraction is fundamental concept differentiating procedural from OOP languages

– C: uses functions as unit of abstraction

* functions manipulate data

– OOP: combines data and function to create a class, the fundamental unit of abstraction

Classes

• Classes: generalisation of a real world entity

– physical real world thing: student/book
– abstract real world thing: subject
– evenmore abstract thing: list/string (data

• template for things with common properties
• attributes andmethods
• defines new data type

Objects

• instance of a class
• contains state
• object: specific, concrete example of a class
• instance: object that exists in your code
• e.g. could define Car as class, then Ford, Ferrari, Toyota may be instances of class, but depen-
dent on the definition

2

Classes and Objects 2020-03-10 10:07

Object Oriented Features

• data abstraction: creating new data types well suited to application by defining new classes

– similar to C struct but with additional features i.e. attributes andmethods

• encapsulation: grouping data (attributes) and methods that manipulate the data to a single
entity through defining a class

– unique to OOP, not present in procedural programming

• information hiding
• delegation
• inheritance
• polymorphism

Class definition

1 <visibility modifier> class <ClassName> {
2 // attribute declarations
3 <visibility modifier> <type> <variable name>;
4 // method declarations
5 <visibility modifier> <typeReturned> myMethod(paramList) {
6 variable declarations
7 statements
8 }
9 }

• instance variables: attributes defined within class (not in methods)

– maintain state of the object
– property/attribute particular to a given object of a class

• local variables: variables define inside a method

Class instantiation

1 Circle aCircle;
2 Circle bCircle;

• this does not create Circle objects: aCircle is a reference/pointer to Circle objects
• currently they are null references as they are pointing to nothing
• null: Java keyword for “no object here”

3

Classes and Objects 2020-03-10 10:07

• objects are null until instantiated

1 Circle circle_1 = new Circl();
2 Circle circle_2 = new Circl();

• new: directs JVM to allocate memory for an object, instantiating it

Garbage collection

• circle_1 = circle_2 changes circle_1 to point to circle_2

– this leaves the original object circle_1 referred to without any references

• an object without a valid reference (orphan) cannot be used in future
• becomes candidate for Java automatic garbage collection

– periodic memory free of unused objects
– do not need to do explicitly

Using instance variables andmethods

1 <objectName>.<variableName>
2 <objectName.<methodName>(<args>);

main method

• a program in Java ⟺ class with a mainmethod
• main is void

Example: Drinking glass

• attributes

– height
– radius
– isFull
– Material: nb this could be defined as a class itself; class composition
– Shape

• methods

4

Classes and Objects 2020-03-10 10:07

– fill glass
– empty glass
– wash glass

Getters and Setters

• instance variables initialised, accessed and updated using specific methods
• Accessor: Getter
• Mutator: Setter
• IDEs support automatic getter/setter generation

1 // setter
2 public void setCentreX(double centreX) {
3 this.centreX = centreX;
4 }
5
6 // getter
7 public double getCentreY() {
8 return centreY;
9 }

Constructors

• constructor: method used to initialise objects

– cannot return values
– has same name as class

• overloading: class can have 1+ constructorswith different sets of parameters

1 public <Classname>(<arguments>) {
2 <execute things>
3 }

e.g. Circle constructor:

1 public Circle(double newCentreX, double newCentreY, double newRadius) {
2 centreX = newCentreX;
3 centreY = newCentreY;
4 radius = newRadius;
5 }

• without constructor: new Circle() produces circle with centre of (0.0, 0.0) and radius 0.0

– default values for variables

5

Classes and Objects 2020-03-10 10:07

Method Overloading

• method overloading: ability to define methods with same name, distinguished by signature,
i.e.:

– number of arguments
– type of arguments
– position of arguments

• any method can be overloaded
• overloading is a type of polymorphism: samemethod different behaviour
• distinct frommethod overriding
• polymorphism: ability to process objects differently depending on type/class

– literal meaning: many shapes
– (Wikipedia)[https://en.m.wikipedia.org/wiki/Polymorphism_(computer_science]

this

• this: reference to calling object i.e. the object that owns/is executing the method
• good practice to use this in constructor

1 public Circle(double centreX, double centreY, double radius) {
2 this.centreX = centreX;
3 this.centreY = centreY;
4 this.radius = radius;
5 }

Static Attributes and Methods

• static members: methods and attributes not specific to any object of the class
• static variable: variable shared among all objects of the class
• static method: method that does not depend on (access/modify) any instance of the class.
Such amethod is invoked using the class name

Static variables example

• for Circle e.g.: static attributemy be numCircles, the number of circles that have been created

– shared between objects: there is only one copy

6

Classes and Objects 2020-03-10 10:07

1 // Circle.java
2 public class Circle {
3 public static int numCircles = 0; // <- static (class) variable,

one instance
4 // for Circle class
5 public double centreX, centreY, radius;
6
7 // constructor
8 public Circle(double x, double y, double r) {
9 centreX = x;
10 centreY = y;
11 radius = r;
12 numCircles++; // <- updating the static variable
13 }
14
15 // other methods here
16 }

• using static variables

1 // CountCircles.java
2 public class CountCircles {
3 public static void main(String args[]) {
4 Circle circleA = new Circle(10.0, 12.0, 20.0);
5 System.out.println("Number of circles = " + Circle.numCircles);
6 Circle circleB = new Circle(5.0, 3.0, 10.0);
7 System.out.println("Number of circles = " + Circle.numCircles;
8 }
9 }

Outputs:

1 Number of circles = 1
2 Number of circles = 2

Instance vs static variables

• instance variables: one copy per object
• static variables: one copy per class

7

Classes and Objects 2020-03-10 10:07

Figure 1: instance_vs_static_vars

Static Methods

• static methods

– cannot access instance variables
– cannot refer to keywords such as this, super because they are related to class instances

• instance methods can access static methods
• Don’t make all methods/attributes static!
• Before making something static consider if it is a class level member or an instance specific
member

e.g. static method to print the number of circles

1 // in Circle.java
2 public static void printNumCircles() {
3 System.out.println("Number of circles = " + numCircles);
4 }

Standard Methods

equals

• equals: used to compare if objects are equal

– using == between objects only checks if references are equal

1 public boolean equals(<ClassName> var) {
2 return <boolean expression>;
3 }

8

Classes and Objects 2020-03-10 10:07

e.g. for Circle:

1 public boolean equals(Circle circle) {
2 return Double.compare(circle.centreX, centreX) == 0 &&
3 Double.compare(circle.centreY, centreY) == 0 &&
4 Double.compare(circle.radius, radius) == 0;
5 }

toString

• toString: returns a String representation of an object

– automatically called when object is asked to act like a String

1 public String toString() {
2 return <String>;
3 }

e.g. Circle class

1 public String toString() {
2 return "I am a cirlce with {" + "centreX=" + centreX +
3 ", centreY=" + centreY +
4 ", radius=" + radius + '}';
5 }

copy

• copy: creates a separate copy of the object sent as input

1 public <ClassName>(<ClassName> var) {
2 <code block>
3 }

• deep copy: if instance variables refer to other objects, new objects with the same statemust be
created using their copy constructor

Operator Overloading

• Java has built in string concatenation (with +), otherwise you cannot arbitrarily define operator
overloading, as is possible in C++ and Python.

9

Classes and Objects 2020-03-10 10:07

• This was initially a personal choice by James Gosling to maintain simplicity and prevent abuse
he had seen with operator overloading in C++. In addition the number strongly supporting op-
erator overloading in Java is outnumbered by those strongly opposing it, thus making a vote
for its inclusion unlikely.

• From (this interview)[http://www.gotw.ca/publications/c_family_interview.htm]:

There are some things that I kind of feel torn about, like operator overloading. I left out operator
overloading as a fairly personal choice because I had seen too many people abuse it in C++. I’ve
spent a lot of time in the past five to six years surveying people about operator overloading and
it’s really fascinating, because youget the community broken into three pieces: Probably about 20
to 30 percent of the population think of operator overloading as the spawn of the devil; somebody
hasdonesomethingwithoperatoroverloading thathas just really ticked themoff, because they’ve
used like + for list insertion and it makes life really, really confusing. A lot of that problem stems
from the fact that there are only about half a dozen operators you can sensibly overload, and yet
there are thousands ormillions of operators that people would like to define – so you have to pick,
and often the choices conflict with your sense of intuition. Then there’s a community of about 10
percent that have actually used operator overloading appropriately and who r eally care about
it, and for whom it’s actually really important; this is almost exclusively people who do numerical
work, where the notation is very important to appealing to people’s intuition, because they come
into it with an intuition about what the + means, and the ability to say “a + b” where a and b are
complex numbers or matrices or something really does make sense. You get kind of shaky when
youget to things likemultiplybecause thereareactuallymultiple kindsofmultiplicationoperators
– there’s vector product, and dot product, which are fundamentally very different. And yet there’s
only one operator, so what do you do? And there’s no operator for square-root. Those two camps
are the poles, and then there’s this mush in the middle of 60-odd percent who really couldn’t care
much either way. The camp of people that think that operator overloading is a bad idea has been,
simply from my informal statistical sampling, significantly larger and certainly more vocal than
the numerical guys. So, given the way that things have gone today where some features in the
language are voted on by the community – it’s not just like some little standards committee, it
really is large-scale – it would be pretty hard to get operator overloading in. And yet it leaves this
one community of fairly important folks kind of totally shut out. It’s a flavor of the tragedy of the
commons problem.

Packages in Java

• package: groups classes and interfaces into bundles, allowing them to be handled together
with an accepted naming convention

– allows reuse, rather than rewriting classes

10

Classes and Objects 2020-03-10 10:07

– prevents naming conflicts
– allows access control
– another level of encapsulation

Package creation

• to place a class in a package, first statement in Java class must be package statement:

1 package <directory1>.<directory2>;

• e.g.

1 package utilities.shapes;
2
3 public class Circle {
4 // Code for Circle goes here
5 }

• Circle.classmust be in directory shapes, a sub-directory of utilities

Using packages

• use packages with the import statement, which has different forms:

1 import <packageName>.*; // import all classes in the package
2 import <packageName>.<className>; // import a particular class from the

package

• parent directory where classes are placedmust be in CLASSPATH environment variable

e.g.

1 import utilities.shapes.Circle;
2 public class CircleTest {
3 public static void main(String args[]) {
4 Circle my_circle = new Circle();
5 }
6 }

• here parent directory of utilitiesmust be in CLASSPATH

11

Classes and Objects 2020-03-10 10:07

default package (Non-assessable)

• all classes in current directory belong to an unnamed default package - no package state-
ment is needed

• if current directory is part ofCLASSPATH all classes indefaultpackage are automatically avail-
able to a program

• if CLASSPATH is set: current directory must be included as one of the alternatives listed, other-
wise Java may not be able to .class files for the program itself.

• if CLASSPATH is set: all class files for a programmust be put in the current directory
• further reading: Packages in Java

Information Hiding

• OO paradigm allows class attributes andmethods to be grouped together (encapsulation)
• information hiding: ability to hide details of a class from outside world

– also part of OO paradigm
– aka visibility control

• interface to the class: actions onobjects canbeperformed through visiblemethods of the class
• access control: preventing an outside class from manipulating properties of another class in
undesired ways

• visibility modifiers: Java implementation to control visibility/access of variables and meth-
ods:

– safely seals data in capsule of class
– prevents programmers from relying on details of class implementation
– helps protect against accidental/wrong usage
– keeps code elegant, clean, making maintenance easier
– provides access to an object through a clean interface

12

https://www.geeksforgeeks.org/packages-in-java/

Classes and Objects 2020-03-10 10:07

Figure 2: encapsulation

Visibility modifiers

Keywords applied to class, method, or attribute: - public: available/visible everywhere (within/out-
side the class) - anyone can use it - private: only visible within a class - methods/attributes - not
visible within subclasses - not inherited - protected: only visible within class, subclasses, and all
classes in the same package - methods/attributes - visible to subclasses in other packages - default:
visibility modifier omitted; - can be accessed within other classes in the same package, but not from
outside the package

Modifier Class Package Subclass Outside

public Y Y Y Y

protected Y Y Y N

default Y Y N N

private Y N N N

13

Classes and Objects 2020-03-10 10:07

Circle class with visibility modifiers

• convention: attributes of class must be made private and accessed through getter/setter
methods, which are public

– methods that other classes do not call must be defined as private

1 public class Circle {
2 private double centreX, centreY, radius;
3
4 // methods to get/set instance variables
5 public double getX() { return centreX; }
6 public double getY() { return centreY; }
7 public double getR() { return radius; }
8 public double setX(double centreX) { this.centreX = centreX;}
9 public double setY(double centreY) { this.centreY = centreY;}
10 public double setR(double radius) { this.radius = radius;}
11 // other methods

Mutability

• mutable class: contains public mutator methods that can change the instance variables

– instances aremutable objects

• immutable class: contains nomethods (except constructors) that change instance variables

– instance objects are immutable objects

e.g Circle class

1 // Circle.java
2 public class Circle {
3 private double centreX, centreY, radius;
4 private static int numCircles;
5
6 public Circle(double newCentreX, double newCentreY, double

newRadius) {...};
7 public double getCentreX() {...};
8 public void setCentreX(double centreX) {...};
9 public double getCentreY() {...};
10 public void setCentreY(double centreY) {...};
11 public double getRadius() {...};
12 public void setRadius(double radius) {...};
13 public double computeCircumference() {...};
14 public double computeArea() {...};
15 public void resize(double factor) {...};
16 public static int getNumCircles() {...};
17 }

14

Classes and Objects 2020-03-10 10:07

• is this an immutable class? No, it has getters and setters that are public
• how would you create an immutable class? Remove all the setters and resize methods.

1 // ImmutableCircle.java
2 public class ImmutableCircle {
3 private final double centreX, centreY, radius; // <- note: these

are now final
4 private static int numCircles;
5
6 public ImmutableCircle(double newCentreX, double newCentreY, double

newRadius) {...};
7 // all setters have been removed
8 public double getCentreX() {...};
9 public double getCentreY() {...};
10 public double getRadius() {...};
11 public double computeCircumference() {...};
12 public double computeArea() {...};
13 public static int getNumCircles() {...};
14 }

Delegation through Association

• class can delegate responsibilities to other classes
• object can invokemethods in other objects through containership
• this is an Association relationship between classes

e.g. Association relationship and Delegation through a Point class containedwithin Circle class. Is
there a better way to store information about the centre of the Circle?

1 public class Circle {
2 private Point centre;
3 private double radius;
4
5 public Circle(Point centre, double radius) {
6 this.centre = centre;
7 this.radius = radius;
8 }
9
10 public double getX() { // <- interface has not changed
11 return centre.getXCoord();
12 }
13
14 public double getY() {
15 return centre.getYCoord();
16 }
17 //other methods here
18 }

15

Classes and Objects 2020-03-10 10:07

• Point object is contained in Circle object: methods in Circle object can call methods in
Point object using reference to the object, centre

Wrapper Classes

• primitive: unit of information that contains only data, with no attributes or methods

– cannot perform actions e.g. parsing
– e.g. int, double

• Java provideswrapper classes for primitives

– packages/boxes primitive data types into objects
– allows primitives to pretend they are classes
– provides extra functionality for primitives

• e.g. boolean→ Boolean
• Java does automatic boxing/unboxing to convert primitive from/to wrapper class

Integer class

• Reverse: Integer.reverse(10)
• Rotate left: Integer.rotateLeft(10, 2)
• Signum: Integer.signum(-10)
• parsing: ‘Integer.parseInt(“10”);

16

	Classes and Objects
	Table of Contents
	OOP overview
	Classes
	Objects

	Object Oriented Features
	Class definition
	Class instantiation
	Garbage collection
	Using instance variables and methods
	main method
	Example: Drinking glass
	Getters and Setters
	Constructors
	Method Overloading
	this
	Static Attributes and Methods
	Static variables example
	Instance vs static variables
	Static Methods

	Standard Methods
	equals
	toString
	copy

	Operator Overloading
	Packages in Java
	Package creation
	Using packages
	default package (Non-assessable)

	Information Hiding
	Visibility modifiers
	Circle class with visibility modifiers

	Mutability
	Delegation through Association
	Wrapper Classes
	Integer class

