Complex Systems

What is a system?

- set of things working together as parts of a mechanism/interconnecting network
- complex whole
- e.g. physiology: set of organs in body with common structure/function
- e.g. biology: human body as a whole
- e.g. automobile

What makes a system complex?

- consider:
 - how many parts in the system?
 - are rules of parts simple or complicated?
 - is the behaviour of the system as a whole simple or complex?
- few parts, simple rules, simple behaviour: e.g. 2 body problem
 - solved analytically
 - produces regular trajectories, predictable
 - complete understanding
- few parts, simple rules, complex behaviour:
 - e.g. 3 body problem
 - * solved numerically
 - * chaotic trajectories
 - e.g. logistic equation: simple dynamical equation giving rise to broad range of complex emergent behaviours, including chaos
- many parts, simple rules, simple behaviour
 - e.g. crystals: highly ordered and regular
 - e.g. gases: highly disordered but statistically homogeneous
- many parts, simple rules, complex behaviour
 - e.g. flocking behaviour
 - e.g. cellular automata
 - e.g. complex networks

- many parts, complicated rules, complex behaviour
 - e.g. biological development, evolution, societies, markets
 - * heterogeneous rules, specialisation, hierarchies
 - * complex behaviour but reproducible and robust
 - * e.g. termite colony producing a mound: local interactions with one another mediated by environment, no centralised leader
 - * e.g. division of a fertilised cell -> increased specialisation -> organs -> full organism
 - * e.g. brain, immune system
- · many parts, complicated rules, deterministic behaviour
 - classical engineering: many specialised parts, globally designed to ensure predictable behaviour
 - behaviour is designed not emergent
- many parts, complicated rules, centralised behaviour
 - e.g. orchestra: global behaviour is emergent but not complex due to centralised controller

What is a complex system?

- complex systems
 - made of a number of components
 - that interact
 - typically in a non-linear fashion
 - may arise from/evolve through self-organisation
 - neither completely regular nor completely random
 - permit development of emergent behaviour at macroscopic scale

Properties

Emergence

- · system has properties individual parts do not
- properties are not easily inferred/predicted
- · different properties can emerge from the same parts depending on context/arrangement
- e.g. bird flock: global pattern of movement (flock shape) emerges, not apparent from observation of any individual bird

Self-organisation

- order increases without external intervention as a result of interactions between parts
- e.g. bird flock: global pattern: neither completely regular nor completely random but does show some order
 - order is not imposed externally, but results from simple set of rules applied by individuals based on local context

Decentralisation

- no single controller
- distribution: each part carries a subset of global information
- bounded knowledge: no part has full view of the whole
- parallelism: parts can act simultaneously
- e.g. bird flock
 - bird at front is not leader
 - all birds act independently based on local cues
 - no bird is aware of whole flock
 - all birds are continuously updating their position

Feedback

- positive feedback: amplify fluctuations in system state
 - e.g. bubbles in cryptocurrency
 - decreases system stability
- negative feedback: damp fluctuations in system state
 - e.g. air-con thermostat
 - increases system stability

What is a model?

- simplified description of a system/process
 - typically mathematical
 - assists calculations/predictions

Why build models?

- examine system behaviour in a way infeasible in real world
 - too expensive
 - too time consuming
 - unethical
 - impossible
- allow us to understand a system by building it
 - analyse
 - predict
 - understand

Mathematical models

Macro-Equations

- macro equations: describe global state/behaviour of system, ignoring individual components
 - e.g. predator-prey system described with ODEs
- analytical solution: closed form solution found via calculus of macro-equations
- numerical solution: discretisation of time/space
 - as typically the case, no closed form solution exists
 - solve algorithmically to discover future trajectory

Computational Models

No macro-equations

- cannot formulate global description of system: pressure, GDP, flock
- systems contain heterogeneity:
 - differentiated parts
 - irregularly **located** parts
 - parts connected in complex **network**
- systems are dynamically adaptive
 - interaction topology changes over time in response to environment

Agent-based models (ABMs)

- arose in 1960s to model systems too complex for analytical descriptions
- system parts: agents with local state and rules
- system structure: pattern of local interaction between agents
- system behaviour: dynamic rules for updating agent state on basis of interactions

Steps in modelling complex system

- 1. define key questions
- 2. identify structure parts and interactions of system
- 3. define possible states for each part
- 4. define how state of each part changes over time through interactions
- 5. verify, validate, evaluate model: simplicity, correctness, robustness
- 6. define, run experiments to address key questions

Questions in complex system modelling

- how to explain current/past events?
 - disease outbreak
 - climate change
 - mass extinction
 - market crashes and bubbles
 - collapse of civilisation
- how to predict future behaviour?
 - motivates understanding of system
- how to design/build better engineered systems
 - nature inspired optimisation ant colonies, particle swarms
 - decentralised computing, Internet
 - autonomous sensor networks

Dynamical systems and Chaos

What is a dynamical system?

• state space $\{x_i\}$: set of possible states

- time *t*: discrete/continuous
- update rule: state at present time x_t as function of earlier states
 - deterministic: history uniquely determines present state
 - non-deterministic: probabilistic/stochastic
- initial condition x_0 : state at t = 0

Functions and iteration

• iteration: using output of previous function application as input for next function application

$$x_0, x_1 = f(x_0), x_2 = f(f(x_0)), \ldots$$

Population growth

- · apex predator: red foxes, not predated by other species
- prey: e.g. numbat, bilby

Fox population

- assumptions:
 - initial population: 2 female red foxes
 - female red fox reproduces in 1st year of life
 - female red fox reproduces once in its life
 - half of newborn kits are female
- number of female red foxes doubles each year: $x_{t+1} = 2x_t$
 - x_t number of female red foxes alive in year t
- produces exponential growth: $x_t = x_0 2^t$
- more generally $x_t = x_0 r^t$, where r governs steepness of curve
 - r: intrinsic rate of increase
 - e.g. r = 1: replacement fertility; stable population
 - e.g. r < 1: shrinking population
- orbit/trajectory: sequence of states visited as dynamical system evolves over time

Model refinement: logistic model of population growth

- unlimited exponential growth unrealistic: red foxes will at some point run out of food/space
- extra assumptions:
 - few red foxes: plenty of food, rapid growth
 - many red foxes: not enough food, slower growth
- define population size A at which foxes eat all available food, producing starvation and 0 foxes next year
 - A: carrying capacity

$$P_{t+1} = rP_t(1-\frac{P_t}{A})$$

- P ~ A: fewer foxes next year; $(1 P_t/A) \approx 0$
- P ~ 0: more foxes next year; $(1-P_t/A)\approx 1$
- let $x = \frac{P}{A}$: logistic map

$$x_{t+1} = rx_t(1 - x_t)$$

Logistic Map

$$x_{t+1} = rx_t(1 - x_t)$$

- rx_t : positive feedback - $(1 - x_t)$: negative feedback - display range of behaviours depending on the value of r - **fixed point:** - numerically: $x_{t+1} = x_t$

 $r \in [0,1]$

- population dies out
- 0: fixed point, stable for $r \in [0, 1]$

 $r\in [1,3)$

- no longer attracted towards 0
- new stable fixed point: identify as intersection of parabola with identity line
- system moves towards stable fixed point whether x_0 less than/greater than it
- i.e. population has a stable value it likes to remain at
- fixed point at 0 still exists but is unstable: at locations near 0, system moves away from 0
- only if x_0 is exactly 0, the system will stay at 0 indefinitely

Figure 2: r = 1.5

$r \geq 3$

- no stable fixed points
- @ r = 3.2: limit cycle with period 2; oscillation between 2 values
- @ r = 3.52: limit cycle with period 4
- @ r = 3.56: limit cycle with period 8
- bifurcation: qualitative change in system's behaviour
 - e.g. transition from fixed point to limit-2 cycle
 - indicate points in parameter space where system behaviour changes dramatically
 - tipping point
- @ r = 3.84: initial transient, followed by limit cycle with period 3

r = 3.84

r = 4.0: Chaotic attractor

- system behaviour appears all transient
- system displays aperiodic behaviour typical of deterministic chaos
- · can be shown that time series never repeats

Chaos

A system is **chaotic** if it displays **all** of the following properties

- 1. deterministic update rule: not random; given same starting conditions, get same result
- 2. aperiodic system behaviour: trajectory does not repeat
- 3. **bounded** system behaviour: exponential never repeats but aperiodicity is not interesting; logistic map bounded between 0 and 1
- 4. **sensitivity** to initial conditions: butterfly effect; wildly varying outputs with only small modification to inputs

Bifurcation Diagrams

- for logistic map, sweep through parameter space of \boldsymbol{r}
- output: series of values system converges to after initial transient

Figure 4: bifurcation diagram of logistic map

• bifurcation diagram of logistic map has **fractal/self-similar** properties: i.e. if you zoom in you see the structure repeated