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Concurrency

What?

• concurrency is a design principle: structuring programs to reflect potential parallelism
• sequential vs concurrent program:
• sequential: single thread of control: one instruction pointer is sufficient to manage execution
• concurrent: multiple threads of control, allowing multiple calculations to occur at the same
time, and simultaneous interaction with external events

• threads/processes in a concurrent program share data or communicate with 1+ threads in that
program

Why?

• natural model: e.g. user interface with keyboard + mouse + multiple windows
• necessity: e.g. autonomous robot requires multiple threads to respond appropriately
• performance: increased performance with multiple processors

Whatmakes it hard?

• processes need to interact:
• communication: communication by accessing shared data/message passing
• synchronisation: processes need to synchronise certain events: Pmustn’t reach p until after Q
has reached q.

• non-determinism: execution is non-deterministic - hencemodel checkers to formally establish
properties

Concurrent Language Paradigms

• shared-memory: uses monitors
• e.g. Concurrent Pascal, Java, C#
• message-passing: Hoare’s idea of Communicating Sequential Processes (CSP)
• e.g. Go, Erlang, Occam

Speed Dependence

• speed-dependent: when concurrent programs are dependent on relative speeds of compo-
nents’ execution
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• fluctuations in processor/IO speed are sources of non-determinism
• real-time systems: when absolute speed of systemmatters (in embedded systems)

Arbitrary interleaving

• model of concurrent behaviour: at level of atomic events, no 2 events occur at exactly the same
time

• e.g. process P performs atomic actions a, b. process Q performs x, y, z.
• 10 possible interleavings of these actions while maintaining order
• arbitrary interleaving model: these 10 sequences are the possible outcome of running P and Q
concurrently

Concurrent Programming Abstraction

• concurrency is an abstraction to help reason about the dynamic behaviour of programs
• the abstraction can be related to machine language instructions, however there are no impor-
tant concepts that cannot be explained at the higher level of abstraction

• concurrent program: finite set of sequential processes, composed of a finite number of atomic
statements

• execution of a concurrent program proceeds via execution of sequence of atomic statements
from the processes

• sequence formed as an arbitrary interleaving of atomic statements of the processes
• computation/scenario: possible execution sequence resulting from interleaving
• NB sequential processes implies ordering of steps is maintained
• control pointer: of a process indicates next statement that can be executed
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Figure 1: Arbitrary Interleaving

• arbitrary interleaving lets us ignore real-time behaviour, making programs more amenable to
formal analysis

• program properties are then invariant under hardware

Atomicity

• assignments such as n := n+1 are not atomic in most programming languages, as most com-
pilers break them up into more basic machine code instructions: load, increment, store

• if 2 processes attempt to increment a shared variable simultaneously, the interleaving of these
atomic instructions could be P.load, Q.load, P.increment, Q.increment, P.store
, Q.store, such that the result is only n+1

• each process falsely assumes exclusive access to n in the read-change-write cycle
• race condition/interference
• requiresmutual exclusion

Correctness

• for a concurrent program to be correct it must be correct for all possible interleavings
• correctness of non-terminating concurrent programs is defined in terms of properties: safety,
liveness

• safety properties: propertymust always be true. For safety property𝑃 to hold, it must be true
that in every state of every computation, 𝑃 is true. “Always, a mouse cursor is displayed”

• safety properties often take form always, something bad is not true
• nothing bad will ever happen
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• e.g. absence of interference
• liveness properties: property must eventually become true. For liveness property 𝑃 to hold,
it must be true that in every computation there is some state in which 𝑃 is true. “If you click on
amouse button, eventually the mouse cursor will change shape”

• something good eventually happens
• e.g. absence of deadlock
• safety, liveness are duals of each other: the negation of a safety property is a liveness property
and vice versa

Java Threads

• in Java processes are called threads

Creation

Two ways to create: - extend java.lang.Thread: as Java doesn’t support multiple inheritance this
is not always possible - implement Runnable interface: recommended approach

States

Alive thread is in one of these states: - running: currently executing - runnable: not currently execut-
ing, but ready to execute - non-runnable: not currently executing, not ready to run - e.g. waiting on
input or shared data to become unlocked

Figure 2: Java thread states

Primitives

• start() causes JVM to execute run() in a dedicated thread, concurrent with the calling code
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• a thread stops executing when run() finishes
• sleep(long milliseconds) allows you to suspend thread for specified time
• isAlive(): indicates whether thread is running
• yield(): causes current thread to pause (running -> runnable)
• transition from runnable -> running is up to runtime system’s scheduler
• t.join() suspends caller until thread t has completed (i.e. two threads join together)

More states

Additional states: - having called sleep() - having called join() - waiting for a lock to be released:
having called wait()

Interruption

• Threads can be interrupted via Thread.interrupt()
• if interrupted in oneof the 3 above states, the thread returns to a runnable state, causingsleep
(), join(), wait() to throw an InterruptedException

Mutual Exclusion (Mutex)

• N processes executing infinite loops, alternating between critical and non-critical sections
• process may halt in non-critical section, but not in critical section

– shared variables are only written to in the critical section: to avoid race condition, only
one thread can be in critical section at any time

1 class P extends Thread {
2 while (true) {
3 non_critical_P();
4 pre_protocol_P();
5 critical_P();
6 post_protocol_P();
7 }
8 }
9
10 class Q extends Thread {
11 while (true) {
12 non_critical_Q();
13 pre_protocol_Q();
14 critical_Q();
15 post_protocol_Q();
16 }
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17 }

Properties of mutex solution

• mutual exclusion: only 1 process may be active in critical section at a time

– safety: ensure interference prevented

• no deadlock: if 1+ processes trying to enter their critical section, one must eventually succeed

– liveness

• no starvation: if a process is trying to enter its critical section, it must eventually succeed

Also desirable: - lack of contention: if only one process is trying to enter critical section, it must
succeed with minimal overhead - efficient

Assumptions

• no variable used in protocol is used in critical/non-critical sections and vice-versa
• load, store, test of common variables are atomic operations
• must be progress through critical sections: if a process reaches critical section, it must eventu-
ally reach the end of it

• cannot assume progress through non-critical sections: a process may terminate or enter an
infinite loop

Attempt 1

• single protocol variable: token passed between processes static int turn = 1;
• processes wait for their turn
• properties:

– mutex: yes. Only 1 thread can enter a critical section at a time
– no deadlock: yes. turn can only have values 1 or 2, so one process can always enter
– no starvation: no: Q can be waiting for its turn while P executes non-critical section indef-
initely. Q never gets a turn - starvation.

Attempt 2

• give each thread a flag. Each thread can only modify its own flag
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• a thread can only enter the critical region when the other process has lowered its flag.
• a thread raises its flag after waiting, as it is entering its critical region
• properties:

– mutual exclusion: no. Possible for both processes to enter critical region simultaneously

Attempt 3

• as in attempt 2, give each thread a flag. Each thread can only modify its own flag
• now each process sets the flag prior to waiting
• properties:

– mutual exclusion: yes
– no deadlock: no. Both processes set flag prior to entering critical region. Neither can pro-
ceed

– no starvation: no, as there can be deadlock, both processes will starve
– lack of contention: yes. if P is in non-critical section Q can enter its critical section

Attempt 4

• as in attempt 3, give each thread a flag. Each thread can only modify its own flag
• each process sets the flag prior to waiting
• if both processes have the flag raised, momentarily lower then re-raise the flag
• properties:

– mutual exclusion: yes
– no deadlock: yes. Lowering of flags removes deadlock
– no starvation: no. Can get livelock, with infinite sequence of both processes lowering/rais-
ing flags without either entering critical region

– lack of contention: yes, per attempt 3

Livelock: processes are still moving, but critical section is unable to be completed

Attempt 5: Dekker’s Algorithm

• use flags + turn token

1 static int turn =1;
2 static int p = 0;
3 static int q = 0;
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• whoever previously entered critical section has lower priority to enter the critical section

1 while (true) {
2 non_critical_P();
3 p = 1;
4 // repeat while Q has flag raised
5 while (q != 0) {
6 // if it is Q's turn
7 if (turn == 2) {
8 // lower flag
9 p = 0;
10 // wait until its P's turn
11 while (turn == 2);
12 // raise p's flag
13 p = 1;
14 }
15 }
16 critical_P();
17 turn = 2;
18 p = 0;
19 }
20
21 while (true) {
22 non_critical_Q();
23 q = 1;
24 // repeat while P has flag raised
25 while (p != 0) {
26 // if it is Q's turn
27 if (turn == 1) {
28 // lower flag
29 q = 0;
30 // wait until its Q's turn
31 while (turn == 1);
32 // raise Q's flag
33 q = 1;
34 }
35 }
36 critical_Q();
37 turn = 1;
38 q = 0;
39 }

• properties:

– mutex: yes. P only enters critical section if q != 0
– no deadlock: yes, thanks to flag lowering
– no starvation: yes, no livelock as in attempt 4 due to turn priority
– lack of contention: yes. If P is in non-critical section Q can enter critical section

• hard to generalise to programs with > 2 processes
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Peterson’s Mutex Algorithm

• 1981 solution, scales more readily than Dekker’s algorithm
• also uses flags and turn token

1 static int turn = 1;
2 static int p = 0;
3 static int q = 0;
4
5 while (true) {
6 non_critical_P();
7 p = 1;
8 turn = 2;
9 // give Q a turn. wait till it is complete
10 while (q && turn == 2);
11 critical_p();
12 p = 0;
13 }

Java: Monitors and synchronisation

• correct algorithms for mutex are tedious and complex to implement
• concurrent programming languages offer higher-level synchronisation primitives
• Java offers

– synchronisedmethods/objects: amethod/object can be declared synchronized - only
1 process can execute/modify it at a time

– monitors: set of synchronized methods/data that queue processes trying to access the
data

Synchronisedmethods

• synchronized keyword declaresmethod/object as being executable/modifiable by only 1 pro-
cess at a time

– marks method as critical section

1 synchronized void increment() { ... }

Synchronized object

• can declare an object as synchronised, making entire object mutually exclusive:
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• disadvantage: requires user of shared object to lock the object, rather than placing this inside
shared object and encapsulating

• if user fails to lock object correctly, race conditions can occur

1 class SynchedObject extends Thread {
2 Counter c;
3
4 public SynchedObject(Counter c) { this.c = c; }
5
6 public void run() {
7 for (int i = 0; i < 5; i++) {
8 synchronized(c) {
9 c.increment();
10 }
11 }
12 }
13 }

Monitors

• language feature that provides mutual exclusion to shared data
• in Java, a monitor is an object that encapsulates some private data, with access via synchro-
nizedmethods

– manages blocking/unblocking of processes seeking access

• e.g. bank account shared between parent and child
• leaving responsibility of wait to client of shared object is bad because

– user has to continually poll: wasteful
– code needs to be replicated for multiple clients
– an incorrect implementation of any client means interference can occur

• monitors alleviate these issues by making the encapsulating class do the work
• monitor: encapsulated data + operations/methods

– maintains queue of processing wanting access

• all objects in Java have monitors, having a lock that allows holding thread to access synchro-
nizedmethods of the object

• Object contains 3 relevant methods:

– void wait(): causes current thread to wait until another thread invokes notify() or
notifyAll() for this object. (i.e. wait() causes the thread to block, and relinquishes
the lock the thread holds to other waiting threads)
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– void notify(): wakes up a single thread waiting on this object’s lock

* choice of thread is arbitrary (up to JVM)

* not needed for this course

– void notifyAll(): wakes up all threads waiting on object’s lock

1 class MonitorAccount extends Account {
2 public synchronized void withdraw(int amount) {
3 while (balance < amount) {
4 // withdrawal cannot proceed. get thread to wait until

balance updates
5 try {
6 wait();
7 } catch (InterruptedException e) {}
8 }
9 super.withdraw(amount);
10 }
11
12 public synchronized void deposit(int amount) {
13 super.deposit(amount);
14 // after deposit, notify all threads waiting for updated

balance
15 notifyAll();
16 }
17 }

Lightweight monitors

• every object has a lock: to execute a synchronizedmethod, a process first needs to acquire
the object’s lock

• the lock is released upon return
• a process P, holding the lock on object o, can relinquish the lock by invoking wait()

– P is thenwaiting on o

• a process Qmay execute o.notify(), changing some waiting process’ state to locking

– Qmust have o’s lock, and be running, for this to occur
– the notifier holds the lock until the end of the synchronisedmethod/code block

• Java monitors are lightweight, and don’t guarantee fairness

– some programming languages include priority: Java does not.
– it is essentially randomwhich thread will be chosen
– typical pattern: while (){ wait()}

* commonmistake: using ifwhere while should be used
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– original monitor concepts allowed for different wait sets, each waiting for a specific condi-
tion to hold. Java does not

* instead Java uses notifyAll() to release all processes waiting on the object

Implementation

• for a class to meet the requirements of a monitor:

– all attributes private
– all methods synchronized

• if a class satisfies these requirements, all methods are treated as atomic events

Volatile variables

• declaring variable volatile directs JVM to reload its value every time it needs to refer to it

– otherwise compiler may optimise code to load value once only

• compilers/VMs load the value of a variable into a cache for efficiency
• if value is modified by one thread, other threads relying on cached values may not detect this,
and use the stale cached value

• updates to variable values may be made initially in the cache, and not immediately be written
back to memory

• declaration of variables as volatile directs VM to read/write that variable directly to/from
memory

Process states

• synchronisation constructs (e.g. monitors) can produce a different non-runnable state in which
the process is blocked

• blocked process relies on other processes to unblock it, after which it is again runnable
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Figure 3: Blocked Java States

Synchronisation constructs

Level of abstraction Construct

High Monitor

Semaphore

Low Protocol variables

Java: Semaphores

• semaphore: (𝑣, 𝑊), simple, versatile concurrent device for managing access to a shared re-
source

– value 𝑣 ∈ ℕ: number of currently available access permits
– wait set 𝑊 : processes currently waiting for access

• must be initialised 𝑆 ∶= (𝑘, {})

– 𝑘: maximum number of threads simultaneously accessing the resource

• atomic operations: wait, signal

Analogy: Hotel with 𝑘 rooms

• 1 guest per room
• at the door is a receptionist
• outside are people wanting a room
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• receptionist gives out the 10 keys they have. Number of keys decreases as each key is handed
out

• once all keys have been handed out, others must wait outside until a key is returned

Operations

• S.wait(): receive permit if available, otherwise get added to the wait set
• S.signal(): return a permit, unblock an arbitrary process

1 S.wait():
2
3 if S.v > 0
4 # provide permit
5 S.v--
6 else
7 # add process p to wait set
8 S.w = union(S.W, p)
9 p.state = blocked

1 S.signal():
2
3 if S.W == {}
4 # empty wait set, so keep the permit
5 S.v++
6 else
7 # hand out permit to someone in the wait set
8 choose q from S.W
9 # remove q from wait set
10 S.W = S.W \ {q}
11 q.state = runnable

Binary Semaphore: Mutex

• if 𝑆.𝑣 ∈ {0, 1}, 𝑆 is called binary/mutex as it ensures mutual exclusion
• semaphoresare implemented inmanyprogramming languages, aswell as at thehardware level

Solution of Mutex Problem

• using a binary semaphore:

1 binary semaphore S = (1, {});
2
3 Process P loop:
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4 p1: non_critical_p();
5 p2: S.wait();
6 p3: critical_p();
7 p4: S.signal();
8
9 Process Q loop:
10 q1: non_critical_q();
11 q2: S.wait();
12 q3: critical_q();
13 q4: S.signal();

State Diagrams

• digraph: nodes - states, edges - transitions
• state gives info about a process at a point in time: values of instruction pointer + local variables
• below shows semaphore solution - only shows signal, wait operations:

Figure 4: Semaphore mutual exclusion

• can show

– correctness of solution (i.e. mutual exclusion): there is no state p4, q4
– absence of deadlock: deadlock would be a node with no outgoing edges
– absence of starvation
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Controlling execution order

• use of 2 semaphores to control sorting

1 integer array A
2 binary semaphore S1 = (0, {})
3 binary semaphore S2 = (0, {})
4
5 p1: sort low half
6 p2: S1.signal()
7 p3:
8
9 q1: sort high half
10 q2: S2.signal()
11 q3:
12
13 # wait for both semaphores to become available
14 m1: S1.wait()
15 m2: S2.wait()
16 m3: merge halves

Strong semaphores

• binary semaphore solution to mutex problem generalises to 𝑁 processes
• when 𝑁 > 2: no longer guarantee of freedom from starvation

– blocked processes are taken arbitrarily from a set
– fair implementation: processes wait in a queue
– removes starvation, and then we have strong semaphore

Bounded Buffer Problem

• e.g. streaming video via YouTube

– Producer: server
– Consumer: browser
– want regular, consistent speed of video even with noisy data transfer
– use a buffer to smooth this out, using a queue of video frames
– need a way to add to/remove from queue
– buffer has finite size:

* cannot add data to a full buffer

* cannot remove data from an empty buffer
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• common pattern in concurrent/async systems
• Producer process p
• Consumer process q
• p generates items for q to process
• if they have similar average but varying speed, a buffer can smooth overall processing and
speed it up, permitting asynchronous communication between p and q

• general semaphores can be used for this:

– two semaphores 𝑆1, 𝑆2 maintain a loop invariant 𝑆1.𝑣 + 𝑆2.𝑣 = 𝑛
– 𝑛: buffer size

• let’s call the semaphores notEmpty, notFull

1 buffer = empty queue;
2 // no permits available for removal from queue
3 semaphore notEmpty = (0, {});
4 // n permits available for adding to queue
5 semaphore notFull = (n, {});
6
7 Producer
8 idem d
9 loop
10 # produce items
11 p1: d = produce();
12 # wait for buffer to have space
13 p2: notFull.wait();
14 p3: buffer.put(d);
15 # indicate data has been put onto buffer
16 p4: notEmpty.signal();
17
18 Consumer
19 item d
20 loop
21 # wait until the buffer has items to consume
22 q1: notEmpty.wait();
23 q2: d = buffer.take();
24 # indicate item taken from buffer
25 q3: notFull.signal();
26 q4: consume(d);

Java semaphores

• java.util.concurrent has Semaphore class

– acquire() = wait
– release() = signal
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• has optional argument to make it a strong semaphore, by default they are weak

Java Thread states in detail

Figure 5: Java thread states

Peterson’s mutex algorithm

1 static int turn = 1;
2 static int p = 0;
3 static int q = 0;
4
5 while (true) {
6 p1: non_critical_P();
7 p2: p = 1;
8 p3: turn = 2;
9 // give Q a turn. wait till it is complete
10 p4: while (q && turn == 2);
11 p5: critical_p();
12 p6: p = 0;
13 }
14
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15 while (true) {
16 q1: non_critical_q();
17 q2: q = 1;
18 q3: turn = 1;
19 // give P a turn. wait till it is comqlete
20 q4: while (p && turn == 2);
21 q5: critical_q();
22 q6: q = 0;
23 }

• finite number of states:

– possibly as many as 288 states, but most are unreachable

• each state is a tuple (𝑝𝑖, 𝑞𝑖, 𝑝, 𝑞𝑡𝑢𝑟𝑛)
• can exclude statements that aren’t part of the protocol 𝑝1, 𝑝5, 𝑞1, 𝑞5
• 14 states of interest
• can see from state diagram

– mutex achieved: states (p6, q6, …) are unreachable
– no deadlock: no state of form (p4, q4, …) is stuck (i.e. can always progress when both are
waiting to enter critical region)

– no starvation: from each state (p4,…) a state (p6,…) can be reached. The same holds for
q4.

Formal modelling with FSP

• Finite State Processes (FSP): language based on Communicating Sequential Processes (CSP)
and Calculus of Communicating Systems (CCS)

• rules for manipulating/reasoning about expressions in these languages: process algebra
• use of FSP vs CSP/CCS

– machine readable syntax
– models are finite. The others can have infinite system states, making them much more
difficult to reason about

– allows us to execute them and exhaustively prove properties about them

Advantages of formal modelling

• forces preciseness in thinking
• provides rigour needed to analyse models, compare with physical circumstances and make
trade-offs
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LTS

• Labelled transition system (LTS): finite statemachine used as a model of our programs
• doesn’t specify timing, only considers sequence

– alternative formalisms do consider timing

FSP

• graphical representation works for small systems but quickly becomes unmanageable/unread-
able for real problems

– huge number of states/transitions

• hence we use an algebraic language, finite state processes, to describe process models
• each FSPmodel has a corresponding LTSmodel

Concepts

• process model consists of

– alphabet: atomic actions that can occur in a process
– definition of legal sequences of atomic actions

• processes, and synchronisation of concurrent processes is described using algebraic operators

Action prefix operator ->

If x is an action and P a process, then x -> P describes a process that first engages in action x and then
behaves as described by P

• always has

– atomic action as left operand
– process as right operand

• repetitive behaviour: use recursion
• atomic actions: lower case
• process names: upper case
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Subprocesses ,

• subprocesses can be defined local to the definition of a process using ,

1 PROCESS = SUBPROCESS,
2 SUBPROCESS = (action1 -> SUBPROCESS2),
3 SUBPROCESS 2 = (action2 -> SUBPROCESS).

Choice |

• choice operation | describes a process that can execute more than one possible sequence of
actions

• (x -> P | y -> Q) describes a process which initially engages in either x or y, followed by
process P or Q respectively

• FSP does not distinguish input/output actions

– actions that form part of a choice are usually considered inputs
– actions that offer no choice are usually considered outputs

Non-deterministic choice

• (x -> P | x -> Q): describes process that engages in x then behaves as P or Q
• x is prefix in both options
• choice ismade by process, not environment: x could be an input from the environment, but the
choice of P/Q is not controlled by it

Indexed Processes

• can use an index to model a process that can take multiple values
• increases expressiveness of FSP
• e.g. buffer that can contain a single input value, ranging from 0-3, and then outputs the value

1 BUFFER = (in[i:0..3] -> out[i] -> BUFFER).

Constants and Ranges

• constants can only take integer values
• ranges are finite ranges of integers
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1 const N = 3
2 range T = 0..N
3
4 BUFF = (in[i:T] -> STORE[i]),
5 STORE[i:T] = (out[i] -> BUFF).

Guarded actions

• guarded action allows a context condition to be added to options in a choice
• (when B x -> P | y -> Q):

– when guard B is true, actions x and y are both eligible to be chosen
– when guard B is false, action x cannot be chosen

• counter

1 COUNT(N=3) = COUNT[0],
2 COUNT[i:0..N] = ( when (i<N) inc -> COUNT[i+1]
3 | when (i>0) dec -> COUNT[i-1]
4 ).

STOP process

• STOP is a special, predefined process that engages in no further actions
• used for defining processes that terminate

Concurrency in FSP

Parallel composition ||

• if P and Q are processes, (P || Q) represents concurrent execution of P and Q
• semantics specify 2 processes will interleave: only a single atomic action from either will exe-
cute at one time

• when a process P is defined by parallel composition, its namemust be prefixed ||P

Parallel composition rules

• algebraic laws - for all P, Q, R:

– commutativity: (P || Q)== (Q || P)
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– associativity: ((P || Q)|| R)== (P || (Q || R))

• composite processes are 1st class citizens and can be interleaved with other processes
• i.e. we can build up large, complicated systems from simpler systems

Shared Actions

• if processes in composition have actions in common, these actions are shared

– this models process interaction

• unshared actions may be arbitrarily interleaved
• shared actionsmust be executed simultaneously by all processes that participate in that shared
action

– i.e. other processes will be blocked until able to take that action

Relabelling actions

• sometimes convenient to make actions relevant to the local process, and rename them so that
they are shared in a composite process

• P/{new1/old1, ..., newN/oldN} is the same as P but with action old1 renamed to new1
etc.

Process Labelling

• to distinguish between different instances of the same process, we can prepend each action
label of an instance with a distinct instance name

• a:P prefixes each action label in P with a
• you can also use an array of prefixes: ||N_CLIENTS(N=3)= (c[i:1..N]:CLIENT).
• equivalently: ||N_CLIENTS(M=3)= (forall[i:1..M] c[i].CLIENT).
• to ensure composite process of the server with clients then shares actions, you will need to
prepend the prefixes for all action labels and add transitions

• {a1,..,ax}::P replaces every action label n in P’s alphabet with the labels a1.n, ..., ax
.n. Every transition n->X in P is replaced with transitions ({a1.n,..,ax.n}->X)

– {a1,..,ax}: shorthand for set of transitions (a1 -> X), ..., (ax -> X)
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Client-Server example

• N clients and one server:

1 CLIENT = (call -> wait -> continue -> CLIENT).
2 SERVER = (request -> service -> reply -> CLIENT).
3
4 ||N_CLIENT_SERVER(N=2) =
5 ( forall[i:1..N] (c[i]:CLIENT)
6 || {c[i..N]}::(SERVER/{call/request, wait/reply})
7 ).

Variable hiding

• you can hide variables to reduce complexity
• P\{a1,...,aN} is the same as P with actions a1, ..., aN removed, making them silent.

• silent actions are name tau and are never shared
• alternatively you can list variables that are not to be hidden: P@{a1,...,aN} is the same as P
with all action names other than a1,...,aN removed

FSP Synchronisation

• we can use LTSA to check for problems such as deadlock, interference automatically
• deadlock: process is blocked waiting for a condition that will never become true
• livelock: busy wait deadlock; process is spinning while waiting for a condition that will never
become true

– can happen if concurrent processes are mutually waiting for each other

Coffman Conditions

4 necessary and sufficient conditions. All must occur for deadlock to happen

1. serially reusable resources: processes must share some reusable resources between them-
selves undermutual exclusion

2. incremental acquisition: processes hold on to allocated resources while waiting for other
resources

3. no preemption: once a process has acquired a resource, it can only release it voluntarily, i.e. it
cannot be preempted/forced to release it
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4. wait-for cycle: a cycle exists in which each process holds a resource which its successor is
waiting for

• e.g. serially reusable resource: 2 people at dinner order steak, with only 1 steak knife at the table

– to eat steak, the steak knife is required
– need to wait for the knife to be available to proceed

• e.g. incremental acquisition: once you have the knife, wait until you also acquire a fork
• any deadlock in concurrent systems can be broken down to 4 Coffman conditions
• Corollary: to remove deadlock, break any of the Coffman conditions

Monitors: FSP vs Java

• FSPmonitors map well to Java monitors: when cond act -> NEW_STATE becomes

1 public synchronized void act() throws InterruptedException {
2 while (!cond) wait();
3 // modify monitor data
4 notifyAll();
5 }

Bounded buffers usingmonitors

• buffer with finite size, into which items are inserted by a producer, and removed by a consumer
in FIFOmanner

• due to finite size, items can only be inserted if buffer is not full, otherwise the producer is
blocked.

• Items can only be removed if it is not empty, otherwise the consumer is blocked

1 // bounded buffer using monitor
2
3 // buffer size
4 const N = 4
5 range U = 0..N
6
7 BUFFER = BUFF[0],
8 BUFF[i:U] = ( when (i < N) put -> BUFF[i+1]
9 | when (i > 0) get -> BUFF[i-1]
10 ).
11
12 PRODUCER = (put -> PRODUCER).
13 CONSUMER = (get -> CONSUMER).
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14
15 ||BOUNDED_BUFFER = (PRODUCER || CONSUMER || BUFFER).

• note FSP implementation is much simpler than Java implementation: FSP is concise and ex-
pressive

Bounded buffers using semaphores

Checking Safety in FSP

Counter

1 const N = 4
2 range T = 0..N
3
4 VAR = VAR[0],
5 // variable can be read/written to
6 VAR[u:T] = (read[u] -> VAR[u] | write[v:T] -> VAR[v]).
7
8 CTR = ( read[x:T] ->
9 ( when (x<N) increment -> write[x+1] -> CTR
10 | when (x==N) end -> END
11 )
12 )+{read[T], write[T]}.
13
14 // create a shared counter
15 ||SHARED_COUNTER = ({a,b}:CTR || {a,b}::VAR).

Alphabet Extensions

• alphabet: set of action a process engages in
• in above e.g. CTR process has alphabet {read[0], ..., read[4], write[1], ...,
write[4]}

• write[0] is not part of the alphabet, as CTR never performs this action
• when CTR is composed with VAR, this means write[0] can be executed at any time
• extend the alphabet of CTR to prevent this problem

Checking for interference

• find a trace such that both processes write the same value
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1 INTERFERENCE = (a.write[v:T] -> b.write[v] -> ERROR).
2
3 ||SHARED_COUNTER = ({a,b}:CTR || {a,b}::VAR || INTERFERENCE).

ERROR is a predefined process signalling an error in the model, causing deadlock.

• now safety check shows deadlock, produced by both processes writing the same value to the
variable

• e.g. both processes write value 1: interference

1 a.read.0
2 a.increment
3 b.read.0
4 a.write.1
5 b.increment
6 b.write.1

Mutual Exclusion

• create a LOCK process to allow synchronisation between counters

1 LOCK = (acquire -> release -> LOCK).

• modify CTR so it has to acquire a lock on VAR before executing the critical section, and release
afterwards

1 CTR = ( acquire -> read[x:T] ->
2 ( when (x<N) increment -> write[x+1] -> release -> CTR
3 | when (x==N) release -> END
4 )
5 )+{read[T], write[T]}.
6
7
8 ||LOCKED_SHAREDCOUNTER = ({a,b}:CTR || {a,b}::(LOCK||VAR)).

• if we add in the INTERFERENCE process, we see it fails to find a trace for interference, but a
deadlock is found (because INTERFERENCE expects a to write before b)

• instead of making INTERFERENCEmore complicated, we should instead use properties

– the approach used above specifies negative behaviours that can occur: sometimes more
powerful to use the inverse
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Safety and Liveness Properties

• methodology:

– describe concurrent processes using FSP
– describe property of model, i.e. something true for every possible trace/execution of that
model

• categories of properties of interest for concurrent systems:

– safety: nothing bad happens during execution. E.g. deadlock

* sequential system safety property: satisfies some assertion each time a given pro-
gram point is reached

* concurrent system: e.g. absence of deadlock/interference

– liveness: something good eventually happens. e.g. all processes trying to access a critical
section eventually get access

* sequential system: system terminates

* concurrent system: as non-terminating, relates to resource access

Error States

• ERROR: pre-defined process signalling termination in an error state, i.e. a statewe don’t want to
move into

• labelled -1
• no outgoing transitions
• can be used to indicate erroneous behaviour: explicitly identify erroneous action

Safety Properties

• better to consider desired systembehaviour rather than enumerating all possible undesirable
behaviours

• i.e. specify desirable properties and check the model maintains them: safety properties
• specified with property keyword
• LTSA compiler adds outgoing action to error state for all actions in process alphabet that aren’t
outgoing actions

– LTS is then complete: all actions can occur from all states, invalid actions leading to the
error state

– safety properties must be deterministic processes: no non-deterministic choice
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• NBsafetypropertiesdon’t affect normal behaviour of original processbecauseall combinations
of actions are allowed: all previous transitions remain, and all shared actions can be synchro-
nised

– if behaviour violating safety property occurs, the result in the composite process is the
error state

1 ACTUATOR = (command -> ACT),
2 ACT = (respond -> ACTUATOR | command -> ACTUATOR).
3
4 property SAFE_ACTUATOR = (command -> respond -> SAFE_ACTUATOR).
5
6 ||CHECK_ACTUATOR = (ACTUATOR || SAFE_ACTUATOR).

Safety property: interference

• returning to counter e.g.
• when a value v is written, the next value written is v+1

1 property NO_INTERFERENCE = ({a,b}.write[v:T] -> (when (v<N) {a,b}.write
[v+1] -> NO_INTERFERENCE)).

2
3 ||SHARED_COUNTER = ({a,b}:CTR || {a,b}::VAR || NO_INTERFERENCE).

• {a,b}.write: either a or b can engage in write
• the property therefore doesn’t care whowrites the value, as long as the next value is one higher
• the guard (v<N) prevents N+1 being written
• safety property processes must be composed with the other processes

Without lock
1 const N = 4
2 range T = 0..N
3
4 VAR = VAR[0],
5 VAR[u:T] = (read[u] -> VAR[u] | write[v:T] -> VAR[v]).
6
7 CTR = (read[x:T] -> ( when (x<N) increment -> write[x+1] -> CTR
8 | when (x == N) end -> END
9 ))+{read[T], write[T]}.
10
11 property NO_INTERFERENCE = ({a,b}.write[v:T] -> (when (v<N) {a,b}.write

[v+1] -> NO_INTERFERENCE)).
12
13 ||SHARED_COUNTER = ({a,b}:CTR || {a,b}::VAR || NO_INTERFERENCE).

• property NO_INTERFERENCE violation
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With lock
1 const N = 4
2 range T = 0..N
3
4 VAR = VAR[0],
5 VAR[u:T] = (read[u] -> VAR[u] | write[v:T] -> VAR[v]).
6
7 LOCK = (acquire -> release -> LOCK).
8 CTR = ( acquire -> read[x:T] ->
9 ( when (x<N) increment -> write[x+1] -> release -> CTR
10 | when (x==N) release -> END
11 )
12 )+{read[T], write[T]}.
13
14 property NO_INTERFERENCE = ({a,b}.write[v:T] -> (when (v<N) {a,b}.write

[v+1] -> NO_INTERFERENCE)).
15
16 ||LOCKED_SHAREDCOUNTER = ({a,b}:CTR || {a,b}::(LOCK||VAR) ||

NO_INTERFERENCE).

• no deadlocks/errors produced, i.e. no interference
• gives more confidence that there is no interference cf. INTERFERENCE process

Safety: Mutual Exclusion with Semaphores

• model of M concurrent loops requiring access to a critical section
• each loop executes the following (mutex = binary semaphore)

– up/signal: return permit
– down/wait: acquire permit
– enter/exit: entering/exiting critical region

• safety property defined for mutual exclusion

1 // example of mutual exclusion with 10 processes attempting to access
critical region, using binary semaphore

2
3 // number of loops
4 const M = 10
5
6 // up/signal: return permit
7 // down/wait: block until permit acquired
8 SEMAPHORE(X=1) = SEMAPHORE[X],
9 SEMAPHORE[i:0..X] =
10 ( when (i < X) signal -> SEMAPHORE[i+1]
11 | when (i > 0) wait -> SEMAPHORE[i-1]
12 ).
13
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14 LOOP = (mutex.wait -> enter -> exit -> mutex.signal -> LOOP).
15
16 // check safety property: mutual exclusion, when a process enters

critical
17 // region, the same process must exit critical region
18 property MUTEX = (p[i:1..M].enter -> p[i].exit -> MUTEX).
19
20 // compose M loops with binary semaphore
21 ||M_LOOPS = ( p[1..M]:LOOP
22 || {p[1..M]}::mutex:SEMAPHORE(1)
23 || MUTEX
24 ).

• now let semaphore have 2 permits: we get a MUTEX property violation, as multiple processes
can enter critical region.

• this approach of deliberately introducing an error is useful for checking safety violations are
detected as expected (i.e. that they are correctly specified.
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