
Security and Cryptography 2020-02-21 22:45

Security and Cryptography

Table of Contents

• Entropy
• Hash functions

– Applications

• Key derivation functions

– Applications

• Symmetric Cryptography

– Applications

• Asymmetric cryptography

– Lock analogy
– Applications
– Key distribution

• Case Studies
• Resources

Entropy

• entropy: measure of randomness
• useful for measuring strength of password
• relevant xkcd

1



Security and Cryptography 2020-02-21 22:45

- entropymeasured in bits: selecting uniformly at random from a set of n possible outcomes, entropy
is log_2(n) - coin toss: 1 bit of entropy - dice roll: 2.58 bits of entropy - consider attacker knows
model of password, but not the randomness used to select a password - how many bits of entropy
suffice? depends on threat model - online guessing: ~40 bits is pretty good - offline guessing: 80
bits+

Hash functions

• cryptographic hash function: maps data of arbitrary size to fixed size

1 hash(value: array<byte>) -> vector<byte, N> (for some fixed N)

• SHA1 is a cryptographic hash function used by Git.

– maps arbitrary-size inputs to 160-bit output (represented as 40 hex chars)
– sha1sum command performs SHA1 hash

2

https://en.wikipedia.org/wiki/SHA-1


Security and Cryptography 2020-02-21 22:45

1 $ printf 'hello' | sha1sum
2 aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d
3 $ printf 'hello' | sha1sum
4 aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d
5 $ printf 'Hello' | sha1sum
6 f7ff9e8b7bb2e09b70935a5d785e0cc5d9d0abf0

• hash function: hard-to-invert, random-looking, deterministic function

– random oracle: a theoretical black box that responds to every unique query with a truly
random response chosen uniformly from the output domain

• properties:

– deterministic: same input always generates same output
– non-invertible: hard to find input m such that hash(m)= h for some desired h
– target collision resistant: given inputm_1 it’s hard to findm_2 such thathash(m_1)= hash
(m_2)

– collision resistant: it’s hard to find two inputs m_1 and m_2 such that hash(m_1)= hash(
m_2) - stronger than target collision resistance

• SHA-1 is no longer considered a strong cryptographic hash function
• lifetimes of cryptographic hash functions

Applications

• Git: uses SHA-1 for content-addressed storage (to be updated to SHA-256 eventually. Hash func-
tions needn’t be cryptographic: so why does Git use a cryptographic hash function?

– consistency check to trust data, not intended for security; best hash function available
– helps to ensure for a Distributed VCS that two different pieces of data will never have the
same digest: this is extremely unlikely with good cryptographic hash functions.

• short summary of file contents e.g. for verification of files from 3rd party mirrors match value
specified by trusted source

• (Commitment scheme)[https://en.wikipedia.org/wiki/Hash_function]: Suppose youwant to com-
mit to a particular value, but reveal the value itself later. For example, I want to do a fair coin
toss “inmy head”, without a trusted shared coin that two parties can see. I could choose a value
r = random(), and then share h = sha256(r). Then, you could call heads or tails (we’ll agree that
even r means heads, and odd r means tails). After you call, I can reveal my value r, and you can
confirm that I haven’t cheated by checking sha256(r) matches the hash I shared earlier.

3

https://en.wikipedia.org/wiki/Random_oracle
https://shattered.io/
https://valerieaurora.org/hash.html
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_function
https://stackoverflow.com/questions/28792784/why-does-git-use-a-cryptographic-hash-function


Security and Cryptography 2020-02-21 22:45

Key derivation functions

• Key derivation functions (KDFS):

– similar to cryptographic hashes; produce fixed-length output for use as keys in other cryp-
tographic algorithms

– usually deliberately slow in order to slow down offline brute-force attacks

Applications

• symmetric cryptography; producing keys from passwords for use in other algorithms
• storing login credentials:

– generate and store a random salt for each user salt = random()
– store KDF(password + salt)
– verify login by matching KDF of entered password + salt to stored value

Symmetric Cryptography

Hiding message contents with symmetric cryptography

1 keygen() -> key (this function is randomized)
2
3 encrypt(plaintext: array<byte>, key) -> array<byte> (the ciphertext)
4 decrypt(ciphertext: array<byte>, key) -> array<byte> (the plaintext)

• encrypt function: given ciphertext, it’s hard to determine plaintext without key
• decrypt function has correctness: decrypt(encrypt(m, k), k)= m
• e.g. Advanced Encryption Standard: AES

Applications

• encrypting files for storage in untrusted cloud service

Asymmetric cryptography

Public-key cryptography

Two keys with two roles 1. Private key is kept private 2. Public key is publicly shared without compro-
mising security

Functionality for encrypt, decrypt, sign, verify: - randomised key generation function

4

https://en.m.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.m.wikipedia.org/wiki/Public-key_cryptography


Security and Cryptography 2020-02-21 22:45

1 keygen() -> (public key, private key)

Alice
0110101010
1101110100
0011011010

Large
Random
Number

Key
Generation
Program

A Public A Private

Figure 1: Key generation

1 encrypt(plaintext: array<byte>, public key) -> array<byte> (ciphertext
)

2 decrypt(ciphertext: array<byte>, private key) -> array<byte> (
plaintext)

5



Security and Cryptography 2020-02-21 22:45

You can also use a key-pair for authentication: sign and verify an unencryptedmessage:

1 sign(message: array<byte>, private key) -> array<byte> (signature)
2 verify(message: array<byte>, signature: array<byte>, public key) ->

bool (whether or not the signature is valid)

6



Security and Cryptography 2020-02-21 22:45

Hello 
Bob!

Alice's
public key

Sign

BE459576
785039E8

Hello 
Bob!

Verify

Alice's
private key

Bob

Alice

Hello 
Bob!

Figure 2: signing and verification, without encryption

• Messages encrypted with public key
• Given ciphertext its hard to determine plaintext without private key
• decrypt function has correctness property
• sign/verify functions are such that it’s hard to forge a signature
• sign: without the private key it’s hard to produce a signature such that verify(message,
signature, public key)= true

• verify: correctness property verify(message, sign(message, private key),
public_key)= true

7



Security and Cryptography 2020-02-21 22:45

Lock analogy

• symmetric cryptosystem: like a door lock; anyone with a key can lock and unlock
• asymmetric encryption: like a padlockwith a key; you could give the unlocked lock to someone
(public key); they could lock amessage in a box; but only you can open it because you have the
key to the lock (private key)

Applications

• PGP email encryption: post public keys online, and then anyone can send you encrypted email
• privatemessaging e.g. signal, keybase use asymmetric keys to establish private communication
channels

• signing software: Git can have GPG-signed commits. Publicly posted keys allow verification of
authenticity

Key distribution

• distribution of public keys/mapping public keys to real world identities are big challenges
• signal: relies on trust on first use; with out-of-band verification in person
• PGP: uses a web of trust
• Keybase: uses social proof

Case Studies

• 2FA Helps protect against stolen passwords and phishing attacks

– TOTP: time-based one-time password e.g. google authenticator doesn’t protect against
phishing

– ideally use a FIDO/U2F dongle e.g. YubiKey
– SMS is useless except for strangers picking up password in transit

• disk encryption: protect your files if your device is lost or stolen

– encrypt entire disk with symmetric cipher, with key protected by passphrase
– Bitlocker, Windows
– cryptsetup + LUKS, Linux
– private messaging: Signal, Keybase

* end-to-end security bootstrapped from asymmetric-key encryption

* critical step: obtaining contacts’ public keys

8



Security and Cryptography 2020-02-21 22:45

* for good security you need to authenticate out-of-band, or trust social proofs

* Electron based desktop apps: huge trust stack so avoid where possible

• SSH:

– ssh-keygen: generates asymmetric keypair public_key, private_key

* randomly generated using OS entropy (hardware events, …)

* public key stored as is

* at rest, private key should be stored encrypted: when you supply a passphrase, key
derivation function is used to produce a key which then encrypts the private key with
a symmetric cipher

– .ssh/authorized_keys stores public keys
– connecting clients prove identity through asymmetric signatures, challenge-response.

* server picks random number and sends to client

* client signs the message and sends signature to server, which verifies signature
against public key on record

* proves that client possesses private key corresponding to public key stored by server,
authenticating connection

• Tor:

– not resistant to powerful global attackers
– weak against traffic analyis attacks
– useful for small scale traffic hiding, but not particularly useful for privacy
– better to use more secure services (Signal, TLS, …)

Resources

• 2019 security lecture

9

https://missing.csail.mit.edu/2019/security/

	Security and Cryptography
	Table of Contents
	Entropy
	Hash functions
	Applications

	Key derivation functions
	Applications

	Symmetric Cryptography
	Applications

	Asymmetric cryptography
	Lock analogy
	Applications
	Key distribution

	Case Studies
	Resources


