Security and Cryptography

2020-02-2122:45

Security and Cryptography

Table of Contents

Entropy
Hash functions

- Applications

Key derivation functions
- Applications
+ Symmetric Cryptography

- Applications

Asymmetric cryptography

- Lock analogy
- Applications
- Key distribution

Case Studies

Resources

Entropy

« entropy: measure of randomness
« useful for measuring strength of password
« relevant xkcd

Security and Cryptography 2020-02-2122:45

~28 BITS OF ENTROPY | | \JAS IT TROMBONE? NO,

(N%Ncgﬁgeﬁ) ORDER _ TROUBADOR. AND ONE OF
- THE Os WAS A ZERQ?
BAee Lopp | UNKNOWN k .

o 21' AND THERE RS

' = 3 DAYS AT SOME SYMBOL...
TrQubddor &3 1000 GUESSES /sec

T Snocart A Bvn
CAPS? 55%% ooiS NOMERAL | | Hirsas SrsreR, sur s bor ubr Tue
PONCTUATION | | DIFFICOLTY To GUESS: | | DIFFICULTY To REMEMBER:

s EASY HARD

~HH BITS OF ENTROPY

correct horse battery staple

2™ =550 YEARS AT
FOUR RANDOM D GUESRS s
COMMON WORDS DIFFicuCTY T UESS: | | DIFFICOLTY To REMEMBER:
HARD DERCRTED T

THROUGH 720 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PRSSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS Th GUESS,

- entropy measured in bits: selecting uniformly at random from a set of n possible outcomes, entropy
is Log_2(n) - coin toss: 1 bit of entropy - dice roll: 2.58 bits of entropy - consider attacker knows
model of password, but not the randomness used to select a password - how many bits of entropy
suffice? depends on threat model - online guessing: ~40 bits is pretty good - offline guessing: 80
bits+

Hash functions

+ cryptographic hash function: maps data of arbitrary size to fixed size

hash(value: array<byte>) -> vector<byte, N> (for some fixed N)

« SHA1is a cryptographic hash function used by Git.

- maps arbitrary-size inputs to 160-bit output (represented as 40 hex chars)
- shalsumcommand performs SHA1 hash

https://en.wikipedia.org/wiki/SHA-1

Security and Cryptography 2020-02-2122:45

$ printf 'hello' | shalsum
aaf4c6lddcc5e8a2dabede®@f3b482cd9aea9434d
$ printf 'hello' | shalsum
aaf4c6lddcc5e8a2dabede®@f3b482cd9aea9434d
$ printf 'Hello' | shalsum
f7ff9e8b7bb2e0®9b70935a5d785e0cc5d9d0abfo

+ hash function: hard-to-invert, random-looking, deterministic function

- random oracle: a theoretical black box that responds to every unique query with a truly
random response chosen uniformly from the output domain

+ properties:

- deterministic: same input always generates same output

- non-invertible: hard to find input m such that hash (m)= h for some desired h

- targetcollision resistant: giveninputm_1it'shardtofindm_2 suchthathash(m_1)= hash
(m_2)

- collision resistant: it’s hard to find two inputs m_1 and m_2 such thathash(m_1)= hash(
m_2) - stronger than target collision resistance

+ SHA-Tis no longer considered a strong cryptographic hash function
« lifetimes of cryptographic hash functions

Applications

+ Git: uses SHA-1 for content-addressed storage (to be updated to SHA-256 eventually. Hash func-
tions needn’t be cryptographic: so why does Git use a cryptographic hash function?

- consistency check to trust data, not intended for security; best hash function available
- helps to ensure for a Distributed VCS that two different pieces of data will never have the
same digest: this is extremely unlikely with good cryptographic hash functions.

+ short summary of file contents e.g. for verification of files from 3rd party mirrors match value
specified by trusted source

+ (Commitment scheme)[https://en.wikipedia.org/wiki/Hash_function]: Suppose you wantto com-
mit to a particular value, but reveal the value itself later. For example, | want to do a fair coin
toss “in my head”, without a trusted shared coin that two parties can see. | could choose a value
r = random(), and then share h = sha256(r). Then, you could call heads or tails (we’ll agree that
even r means heads, and odd r means tails). After you call, | can reveal my value r, and you can
confirm that | haven’t cheated by checking sha256(r) matches the hash | shared earlier.

https://en.wikipedia.org/wiki/Random_oracle
https://shattered.io/
https://valerieaurora.org/hash.html
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_function
https://stackoverflow.com/questions/28792784/why-does-git-use-a-cryptographic-hash-function

Security and Cryptography 2020-02-2122:45

Key derivation functions

« Key derivation functions (KDFS):

- similar to cryptographic hashes; produce fixed-length output for use as keys in other cryp-
tographic algorithms
- usually deliberately slow in order to slow down offline brute-force attacks

Applications
« symmetric cryptography; producing keys from passwords for use in other algorithms
« storing login credentials:

- generate and store a random salt for each user salt = random()
- store KDF (password + salt)
- verify login by matching KDF of entered password + salt to stored value

Symmetric Cryptography

Hiding message contents with symmetric cryptography

keygen() -> key (this function is randomized)

encrypt(plaintext: array<byte>, key) -> array<byte> (the ciphertext)
decrypt(ciphertext: array<byte>, key) -> array<byte> (the plaintext)

« encrypt function: given ciphertext, it’s hard to determine plaintext without key
« decrypt function has correctness: decrypt(encrypt(m, k), k)= m
« e.g. Advanced Encryption Standard: AES

Applications

+ encrypting files for storage in untrusted cloud service

Asymmetric cryptography

Public-key cryptography

Two keys with two roles 1. Private key is kept private 2. Public key is publicly shared without compro-
mising security

Functionality for encrypt, decrypt, sign, verify: - randomised key generation function

https://en.m.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.m.wikipedia.org/wiki/Public-key_cryptography

Security and Cryptography 2020-02-2122:45

keygen() -> (public key, private key)

J(Number®

Key
Generation
Program

‘ A Private

Figure 1: Key generation

encrypt(plaintext: array<byte>, public key) -> array<byte> (ciphertext

)
decrypt(ciphertext: array<byte>, private key) -> array<byte> (
plaintext)

Security and Cryptography 2020-02-2122:45

Bob

Hello
Alice!

—> Encrwt(@—mﬂ

+ Alice's
public key

6EB6957
08EO3CE

Alice

—
He""-q—Decrypt

Alice! Alice's
private key

You can also use a key-pair for authentication: sign and verify an unencrypted message:

sign(message: array<byte>, private key) -> array<byte> (signature)
verify(message: array<byte>, signature: array<byte>, public key) ->
bool (whether or not the signature is valid)

Security and Cryptography 2020-02-2122:45

Alice

Hello
Bob!

—p Sign
+ Alice's
private key

Hello

| BE459576
Bob! 785039E8

Bob

\ O
Hello | o | verify
Bob! Alice's

public key

Figure 2: signing and verification, without encryption

+ Messages encrypted with public key

« Given ciphertext its hard to determine plaintext without private key

« decrypt function has correctness property

« sign/verify functions are such that it’s hard to forge a signature

« sign: without the private key it’s hard to produce a signature such that verify(message,
signature, public key)= true

« verify: correctness property verify(message, sign(message, private key),

public_key)= true

Security and Cryptography 2020-02-2122:45

Lock analogy

« symmetric cryptosystem: like a door lock; anyone with a key can lock and unlock

« asymmetric encryption: like a padlock with a key; you could give the unlocked lock to someone
(public key); they could lock a message in a box; but only you can open it because you have the
key to the lock (private key)

Applications

« PGP email encryption: post public keys online, and then anyone can send you encrypted email

+ private messaging e.g. signal, keybase use asymmetric keys to establish private communication
channels

« signing software: Git can have GPG-signed commits. Publicly posted keys allow verification of
authenticity

Key distribution

« distribution of public keys/mapping public keys to real world identities are big challenges
+ signal: relies on trust on first use; with out-of-band verification in person

+ PGP: uses a web of trust

« Keybase: uses social proof

Case Studies

+ 2FA Helps protect against stolen passwords and phishing attacks

- TOTP: time-based one-time password e.g. google authenticator doesn’t protect against
phishing

- ideally use a FIDO/U2F dongle e.g. YubiKey

- SMS is useless except for strangers picking up password in transit

« disk encryption: protect your files if your device is lost or stolen

encrypt entire disk with symmetric cipher, with key protected by passphrase

Bitlocker, Windows

cryptsetup + LUKS, Linux

private messaging: Signal, Keybase
* end-to-end security bootstrapped from asymmetric-key encryption
* critical step: obtaining contacts’ public keys

Security and Cryptography 2020-02-2122:45

* for good security you need to authenticate out-of-band, or trust social proofs
* Electron based desktop apps: huge trust stack so avoid where possible

o SSH:

ssh-keygen: generates asymmetric keypair public_key, private_key

* randomly generated using OS entropy (hardware events, ...)

* public key stored as is

* at rest, private key should be stored encrypted: when you supply a passphrase, key
derivation function is used to produce a key which then encrypts the private key with
a symmetric cipher

.ssh/authorized_keys stores public keys

connecting clients prove identity through asymmetric signatures, challenge-response.

* server picks random number and sends to client

* client signs the message and sends signature to server, which verifies signature
against public key on record

* proves that client possesses private key corresponding to public key stored by server,
authenticating connection

o Tor:

not resistant to powerful global attackers

weak against traffic analyis attacks
useful for small scale traffic hiding, but not particularly useful for privacy

better to use more secure services (Signal, TLS, ...)

Resources

« 2019 security lecture

https://missing.csail.mit.edu/2019/security/

	Security and Cryptography
	Table of Contents
	Entropy
	Hash functions
	Applications

	Key derivation functions
	Applications

	Symmetric Cryptography
	Applications

	Asymmetric cryptography
	Lock analogy
	Applications
	Key distribution

	Case Studies
	Resources

