
Metaprogramming 2020-02-26

Metaprogramming

Table of Contents

• Build systems

– make
– Other build systems

• Dependency Management

– Semantic versioning
– Lock files

• Continuous Integration
• Tests

Build systems

Build systems run a build process. Combination of - targets - dependencies - rules You tell the build
system that you want a particular target, and its job is to find all the transitive dependencies of that
target, and then apply the rules to produce intermediate targets all the way until the final target has
been produced. - typically won’t build if already up to date

make

• available on Windows, Linux, MacOS
• suitable for small-to-medium projects
• running make consults Makefile in current directory

1 paper.pdf: paper.tex plot-data.png
2 pdflatex paper.tex
3
4 plot-%.png: %.dat plot.py
5 ./plot.py -i $*.dat -o $@

• each directive is a rule for how to produce LHS (target) from RHS (dependencies)
• indented block is sequence of programs to produce the target
• first directive defines default goal; running makewith no arguments will build this target
• alternatively make plot-data.pngwill build that target instead
• %will match the same string on LHS and RHS
• must use TAB not spaces

1

Metaprogramming 2020-02-26

Other build systems

• cmake: for C projects
• maven: for Java projects

Dependency Management

Semantic versioning

major.minor.patch Release increments number of: - patch: API hasn’t changed - minor: API has
new, backwards-compatible changes -major: API has backwards-incompatible change

e.g. python 2.7 vs 3.6 Semantic versioning allows you to specify dependencies via amajor version and
project should still work with later versions

Lock files

• list of dependencies and current version you are using
• good for

– reproducible builds
– avoiding unnecessary recompiles
– not automatically updating to latest version

• vendoring: copy full project dependency into your project

– full control over any changes, but means you need to pull in updates from maintainers
manually

Continuous Integration

• cloud build system
• execute event-triggered actions e.g. linting, build project, load to PyPI, run test suite
• add recipe to your repository with events and actions
• e.g. Travis CI, Azure Pipelines, Github Actions

– (Dependabot)[https://dependabot.com/]

2

Metaprogramming 2020-02-26

Tests

• test suite: collection of tests usually run as a unit, composed of

– unit tests: small, self-contained, testing single particular feature
– integration tests: test interaction between sub-systems
– mocking: replace parts of systemwith dummy version that behaves in controlled way

* e.g. a tool to do file copying over ssh: mock the network so you don’t need a network
to run test suite

Exercises

1. Mostmakefiles provide a target called clean. This isn’t intended to produce a file called clean,
but instead to clean up any files that canbe re-built bymake. Think of it as away to “undo” all of
the build steps. Implement a clean target for the paper.pdf Makefile above. You will have
to make the target phony. You may find the git ls-files subcommand useful. A number of
other very commonmake targets are listed here.

• Solution:

1 PHONY: clean
2 clean:
3 git ls-files --other | xargs rm

2. Take a look at the variousways to specify version requirements for dependencies in Rust’s build
system. Most package repositories support similar syntax. For each one (caret, tilde, wildcard,
comparison, and multiple), try to come up with a use-case in which that particular kind of re-
quirement makes sense.

• Solution:

– ^: allows patch andminor updates from specified version, disallows major updates

* e.g. ^1.2.3 := >=1.2.3, < 2.0.0

* use case: probably typical for dependencies that aren’t critical or heavily used -
you will get latest patches and minor versions which should be compatible. Will
require deliberate upgrade to nextmajor version to ensure functionality isn’t bro-
ken.

– ~: minimal version with some ability to update. if major+minor+patch specified only
patch level changes are allowed. If major+minor specified only minor changes al-
lowed:

3

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html
https://git-scm.com/docs/git-ls-files
https://www.gnu.org/software/make/manual/html_node/Standard-Targets.html#Standard-Targets
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html

Metaprogramming 2020-02-26

* e.g. ~1.2 := >=1.2.0, <1.3.0

* use case: you may use ~1.2 when dependency is critical to project, while ensur-
ing that patches are installed

– *: allows any version in position of wildcard

* use case: if dependency is mature and fairly stable, and not used heavily in your
project, you may specify a major version and wildcard the minor version to get
the latest compatible version

– <, <=, >, >=, =: manual specification of version range or exact version

* use case: if dependency is unstable and critical youmaywant to lock a particular
version andmanually update patches to ensure it functions as expected

– multiple requirements e.g. >= 1.2, < 1.5

* usecase: testsmaypassona rangeofdependenciesbut fail after a certain version,
so youmay limit requirements to a specific range

3. Git can act as a simple CI system all by itself. In .git/hooks inside any git repository, you will
find (currently inactive) files that are run as scripts when a particular action happens. Write a
pre-commit hook that runs make paper.pdf and refuses the commit if the make command
fails. This should prevent any commit from having an un-buildable version of the paper.

.git/hooks/pre-commit: “‘ #!/bin/sh # # Pre-commit script to prevent commit if the make
fails

Redirect output to stderr. exec 1>&2

if make

then echo “Make successful” else cat « EOF Error: could not make pdf EOF exit 1 fi
“‘

4. Set up a simple auto-published page using GitHub Pages. Add a GitHub Action to the repository
to run shellcheck on any shell files in that repository (here is one way to do it). Check that it
works!

•

5. Build yourownGitHubaction to runproselintorwrite-goodonall the.md files in the repos-
itory. Enable it in your repository, and check that it works by filing a pull request with a typo in
it.

4

https://git-scm.com/docs/githooks#_pre_commit
https://help.github.com/en/actions/automating-your-workflow-with-github-actions
https://github.com/features/actions
https://github.com/marketplace/actions/shellcheck
https://help.github.com/en/actions/automating-your-workflow-with-github-actions/building-actions
http://proselint.com/
https://github.com/btford/write-good

	Metaprogramming
	Table of Contents
	Build systems
	make
	Other build systems

	Dependency Management
	Semantic versioning
	Lock files

	Continuous Integration
	Tests

	Exercises

