
Debugging and profiling 2020-02-17

Based on https://missing.csail.mit.edu/2020/debugging-profiling/

Table of Contents

• Printf debugging and Logging
• Third party logs
• Debuggers
• Specialized Tools
• Static Analysis
• Timing
• Profilers

– CPU
– Memory
– Event Profiling
– Visualization

• Resource Monitoring

– Specialized tools

• Debugging
• Profiling

Printf debugging and Logging

“Themost effective debugging tool is still careful thought, coupledwith judiciously placed print state-
ments” — Brian Kernighan, Unix for Beginners.

1. Print statements
2. Logging: better than regular print statements for several reasons:

• log to files, sockets or even remote servers instead of standard output.
• severity levels (such as INFO, DEBUG, WARN, ERROR, &c) allow you to filter the output
• For new issues, there’s a fair chance that your logs will contain enough information to de-
tect what is going wrong.

Here is an example code that logs messages:

1 $ python logger.py
2 # Raw output as with just prints

1

/static/files/logger.py


Debugging and profiling 2020-02-17

3 $ python logger.py log
4 # Log formatted output
5 $ python logger.py log ERROR
6 # Print only ERROR levels and above
7 $ python logger.py color
8 # Color formatted output

• colour code logs to make themmore readable

Programs like ls or grep are using ANSI escape codes, which are special sequences of characters
to indicate your shell to change the color of the output. For example, executing echo -e "\e
[38;2;255;0;0mThis is red\e[0m" prints the message This is red in red on your terminal.
The following script shows how to print many RGB colors into your terminal.

1 #!/usr/bin/env bash
2 for R in $(seq 0 20 255); do
3 for G in $(seq 0 20 255); do
4 for B in $(seq 0 20 255); do
5 printf "\e[38;2;${R};${G};${B}█m\e[0m";
6 done
7 done
8 done

Third party logs

As you start building larger software systems you will most probably run into dependencies that run
as separate programs. Web servers, databases ormessage brokers are common examples of this kind
of dependencies. When interacting with these systems it is often necessary to read their logs, since
client side error messages might not suffice.

Luckily, most programswrite their own logs somewhere in your system. - UNIX systems: usually write
their logs under /var/log - e.g. NGINX webserver: /var/log/nginx. - More recently, systems have
started using a system log, which is increasingly where all of your log messages go. - Most Linux
systems use systemd, a system daemon that controls many things in your system such as which ser-
vices are enabled and running. systemd places the logs under /var/log/journal in a specialized
format and you can use the journalctl command to display themessages. - UNIX systems you can
also use the dmesg command to access the kernel log. - For logging under the system logs you can
use the logger shell program.

Here’s an example of using logger and how to check that the entry made it to the system logs. NB
most programming languages have bindings logging to the system log.

1 logger "Hello Logs"
2 # On macOS

2

https://en.wikipedia.org/wiki/ANSI_escape_code
https://www.nginx.com/
http://man7.org/linux/man-pages/man1/journalctl.1.html
http://man7.org/linux/man-pages/man1/dmesg.1.html
http://man7.org/linux/man-pages/man1/logger.1.html


Debugging and profiling 2020-02-17

3 log show --last 1m | grep Hello
4 # On Linux
5 journalctl --since "1m ago" | grep Hello

• logs can be quite verbose and require some level of processing and filtering to get the informa-
tion you want.

• If you find yourself heavily filtering throughjournalctl andlog show you can consider using
their flags, which can perform a first pass of filtering of their output.

• some tools like lnav provide an improved presentation and navigation for log files.

Debuggers

When printf debugging is not enough you should use a debugger. Debuggers are programs that let
you interact with the execution of a program, allowing the following:

• Halt execution of the programwhen it reaches a certain line.
• Step through the program one instruction at a time.
• Inspect values of variables after the program crashed.
• Conditionally halt the execution when a given condition is met.
• Andmanymore advanced features

Many programming languages comewith some formof debugger. In Python this is the PythonDebug-
ger pdb.

Here is a brief description of some of the commands pdb supports:

• l(ist) - Displays 11 lines around the current line or continue the previous listing.
• s(tep) - Execute the current line, stop at the first possible occasion.
• n(ext) - Continue execution until the next line in the current function is reached or it returns.
• b(reak) - Set a breakpoint (depending on the argument provided).
• p(rint) - Evaluate the expression in the current context and print its value. There’s also pp to
display using pprint instead.

• r(eturn) - Continue execution until the current function returns.
• q(uit) - Quit the debugger.

Let’s go through an example of using pdb to fix the following buggy python code. (See the lecture
video).

1 def bubble_sort(arr):
2 n = len(arr)
3 for i in range(n):
4 for j in range(n):

3

http://lnav.org/
https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/pprint.html


Debugging and profiling 2020-02-17

5 if arr[j] > arr[j+1]:
6 arr[j] = arr[j+1]
7 arr[j+1] = arr[j]
8 return arr
9
10 print(bubble_sort([4, 2, 1, 8, 7, 6]))

Note that since Python is an interpreted languagewe can use the pdb shell to execute commands and
to execute instructions. ipdb is an improved pdb that uses the IPython REPL enabling tab comple-
tion, syntax highlighting, better tracebacks, and better introspection while retaining the same inter-
face as the pdbmodule.

For more low level programming you will probably want to look into gdb (and its quality of life modi-
fication pwndbg) and lldb. They are optimized for C-like language debugging but will let you probe
pretty much any process and get its current machine state: registers, stack, program counter, &c.

Specialized Tools

Even if what you are trying to debug is a black box binary there are tools that can help you with that.
Wheneverprogramsneed toperformactions thatonly thekernel can, theyuseSystemCalls. Thereare
commands that let you trace the syscalls your program makes. In Linux there’s strace and macOS
and BSD have dtrace. dtrace can be tricky to use because it uses its own D language, but there is a
wrapper called dtruss that provides an interface more similar to strace (more details here).

Below are some examples of using strace or dtruss to show stat syscall traces for an execution of
ls. For a deeper dive into strace, this is a good read.

1 # On Linux
2 sudo strace -e lstat ls -l > /dev/null
3 4
4 # On macOS
5 sudo dtruss -t lstat64_extended ls -l > /dev/null

Under some circumstances, you may need to look at the network packets to figure out the issue in
your program. Tools like tcpdump and Wireshark are network packet analyzers that let you read the
contents of network packets and filter them based on different criteria.

Forweb development, the Chrome/Firefox developer tools are quite handy. They feature a large num-
ber of tools, including: - Source code - Inspect the HTML/CSS/JS source code of any website. - Live
HTML, CSS, JS modification - Change the website content, styles and behavior to test (you can see
for yourself that website screenshots are not valid proofs). - Javascript shell - Execute commands in
the JS REPL. - Network - Analyze the requests timeline. - Storage - Look into the Cookies and local
application storage.

4

https://pypi.org/project/ipdb/
https://ipython.org
https://www.gnu.org/software/gdb/
https://github.com/pwndbg/pwndbg
https://lldb.llvm.org/
https://en.wikipedia.org/wiki/System_call
http://man7.org/linux/man-pages/man1/strace.1.html
http://dtrace.org/blogs/about/
https://www.manpagez.com/man/1/dtruss/
https://8thlight.com/blog/colin-jones/2015/11/06/dtrace-even-better-than-strace-for-osx.html
http://man7.org/linux/man-pages/man2/stat.2.html
https://blogs.oracle.com/linux/strace-the-sysadmins-microscope-v2
http://man7.org/linux/man-pages/man1/tcpdump.1.html
https://www.wireshark.org/


Debugging and profiling 2020-02-17

Static Analysis

For some issues you do not need to run any code. For example, just by carefully looking at a piece of
code you could realize that your loop variable is shadowing an already existing variable or function
name; or that a program reads a variable before defining it. Here is where static analysis tools come
into play. Static analysis programs take source code as input and analyze it using coding rules to
reason about its correctness.

In the following Python snippet there are several mistakes. First, our loop variable foo shadows the
previous definition of the function foo. We also wrote baz instead of bar in the last line, so the pro-
gramwill crash after completing the sleep call (which will take oneminute).

1 import time
2
3 def foo():
4 return 42
5
6 for foo in range(5):
7 print(foo)
8 bar = 1
9 bar *= 0.2
10 time.sleep(60)
11 print(baz)

Static analysis tools can identify this kind of issues. When we run pyflakes on the code we get the
errors related to both bugs. mypy is another tool that can detect type checking issues. Here, mypy
will warn us that bar is initially an int and is then casted to a float. Again, note that all these issues
were detected without having to run the code.

In the shell tools lecture we covered shellcheck, which is a similar tool for shell scripts.

1 $ pyflakes foobar.py
2 foobar.py:6: redefinition of unused 'foo' from line 3
3 foobar.py:11: undefined name 'baz'
4
5 $ mypy foobar.py
6 foobar.py:6: error: Incompatible types in assignment (expression has

type "int", variable has type "Callable[[], Any]")
7 foobar.py:9: error: Incompatible types in assignment (expression has

type "float", variable has type "int")
8 foobar.py:11: error: Name 'baz' is not defined
9 Found 3 errors in 1 file (checked 1 source file)

Most editors and IDEs support displaying the output of these toolswithin the editor itself, highlighting
the locations ofwarnings anderrors. This is often called code linting and it can alsobeused todisplay
other types of issues such as stylistic violations or insecure constructs.

5

https://en.wikipedia.org/wiki/Static_program_analysis
https://pypi.org/project/pyflakes
http://mypy-lang.org/
https://www.shellcheck.net/


Debugging and profiling 2020-02-17

In vim, thepluginsaleorsyntasticwill let youdo that. For Python,pylint andpep8 are examples
of stylistic linters and bandit is a tool designed to find common security issues. For other languages
people have compiled comprehensive lists of useful static analysis tools, suchasAwesomeStatic Anal-
ysis (youmay want to take a look at theWriting section) and for linters there is Awesome Linters.

A complementary tool to stylistic linting are code formatters such as black for Python, gofmt for Go
or rustfmt for Rust. These tools autoformat your code so that it’s consistent with common stylistic
patterns for thegivenprogramming language. Althoughyoumightbeunwilling togive stylistic control
about your code, standardizing code format will help other people read your code and will make you
better at reading other people’s (stylistically standardized) code.

Profiling

Even if your code functionally behaves as youwould expect, thatmight not be good enough if it takes
all your CPU or memory in the process. Algorithms classes often teach big O notation but not how to
find hot spots in your programs. Since premature optimization is the root of all evil, you should learn
about profilers andmonitoring tools. They will help you understand which parts of your program are
taking most of the time and/or resources so you can focus on optimizing those parts.

Timing

Similarly to the debugging case, in many scenarios it can be enough to just print the time it took your
code between two points. Here is an example in Python using the timemodule.

1 import time, random
2 n = random.randint(1, 10) * 100
3
4 # Get current time
5 start = time.time()
6
7 # Do some work
8 print("Sleeping for {} ms".format(n))
9 time.sleep(n/1000)
10
11 # Compute time between start and now
12 print(time.time() - start)
13
14 # Output
15 # Sleeping for 500 ms
16 # 0.5713930130004883

However, wall clock time can bemisleading since your computermight be running other processes at

6

https://vimawesome.com/plugin/ale
https://vimawesome.com/plugin/syntastic
https://www.pylint.org
https://pypi.org/project/pep8/
https://pypi.org/project/bandit/
https://github.com/mre/awesome-static-analysis
https://github.com/mre/awesome-static-analysis
https://github.com/caramelomartins/awesome-linters
https://github.com/psf/black
http://wiki.c2.com/?PrematureOptimization
https://docs.python.org/3/library/time.html


Debugging and profiling 2020-02-17

the same time or waiting for events to happen. It is common for tools to make a distinction between
Real, User and Sys time. In general, User + Sys tells you howmuch time your process actually spent in
the CPU (more detailed explanation here).

• Real - Wall clock elapsed time from start to finish of the program, including the time taken by
other processes and time taken while blocked (e.g. waiting for I/O or network)

• User - Amount of time spent in the CPU running user code
• Sys - Amount of time spent in the CPU running kernel code

For example, try runninga command thatperformsanHTTP request andprefixing itwithtime. Under
a slow connection you might get an output like the one below. Here it took over 2 seconds for the
request to complete but the process only took 15ms of CPU user time and 12ms of kernel CPU time.

1 $ time curl https://missing.csail.mit.edu &> /dev/null`
2 real 0m2.561s
3 user 0m0.015s
4 sys 0m0.012s

Profilers

CPU

Most of the time when people refer to profilers they actually mean CPU profilers, which are the most
common. There are two main types of CPU profilers: tracing and sampling profilers. Tracing profil-
ers keep a record of every function call your program makes whereas sampling profilers probe your
program periodically (commonly every millisecond) and record the program’s stack. They use these
records to present aggregate statistics of what your program spent the most time doing. Here is a
good intro article if you want more detail on this topic.

Most programming languages have some sort of command line profiler that you can use to analyze
your code. They often integrate with full fledged IDEs but for this lecture we are going to focus on the
command line tools themselves.

In Pythonwe canuse thecProfilemodule to profile timeper function call. Here is a simple example
that implements a rudimentary grep in Python:

1 #!/usr/bin/env python
2
3 import sys, re
4
5 def grep(pattern, file):
6 with open(file, 'r') as f:
7 print(file)

7

https://stackoverflow.com/questions/556405/what-do-real-user-and-sys-mean-in-the-output-of-time1
http://man7.org/linux/man-pages/man1/time.1.html
https://jvns.ca/blog/2017/12/17/how-do-ruby---python-profilers-work-


Debugging and profiling 2020-02-17

8 for i, line in enumerate(f.readlines()):
9 pattern = re.compile(pattern)
10 match = pattern.search(line)
11 if match is not None:
12 print("{}: {}".format(i, line), end="")
13
14 if __name__ == '__main__':
15 times = int(sys.argv[1])
16 pattern = sys.argv[2]
17 for i in range(times):
18 for file in sys.argv[3:]:
19 grep(pattern, file)

We can profile this code using the following command. Analyzing the output we can see that IO is
taking most of the time and that compiling the regex takes a fair amount of time as well. Since the
regex only needs to be compiled once, we can factor it out of the for.

1 $ python -m cProfile -s tottime grep.py 1000 '^(import|\s*def)[^,]*$'
*.py

2
3 [omitted program output]
4
5 ncalls tottime percall cumtime percall filename:lineno(function)
6 8000 0.266 0.000 0.292 0.000 {built-in method io.open}
7 8000 0.153 0.000 0.894 0.000 grep.py:5(grep)
8 17000 0.101 0.000 0.101 0.000 {built-in method builtins

.print}
9 8000 0.100 0.000 0.129 0.000 {method 'readlines' of '

_io._IOBase' objects}
10 93000 0.097 0.000 0.111 0.000 re.py:286(_compile)
11 93000 0.069 0.000 0.069 0.000 {method 'search' of '_sre

.SRE_Pattern' objects}
12 93000 0.030 0.000 0.141 0.000 re.py:231(compile)
13 17000 0.019 0.000 0.029 0.000 codecs.py:318(decode)
14 1 0.017 0.017 0.911 0.911 grep.py:3(<module>)
15
16 [omitted lines]

A caveat of Python’s cProfile profiler (and many profilers for that matter) is that they display time
per function call. That can become intuitive really fast, specially if you are using third party libraries
in your code since internal function calls are also accounted for. A more intuitive way of displaying
profiling information is to include the time taken per line of code, which is what line profilers do.

For instance, the following piece of Python code performs a request to the class website and parses
the response to get all URLs in the page:

1 #!/usr/bin/env python
2 import requests
3 from bs4 import BeautifulSoup

8



Debugging and profiling 2020-02-17

4
5 # This is a decorator that tells line_profiler
6 # that we want to analyze this function
7 @profile
8 def get_urls():
9 response = requests.get('https://missing.csail.mit.edu')
10 s = BeautifulSoup(response.content, 'lxml')
11 urls = []
12 for url in s.find_all('a'):
13 urls.append(url['href'])
14
15 if __name__ == '__main__':
16 get_urls()

If we used Python’s cProfile profiler we’d get over 2500 lines of output, and even with sorting it’d
be hard to understand where the time is being spent. A quick run with line_profiler shows the
time taken per line:

1 $ kernprof -l -v a.py
2 Wrote profile results to urls.py.lprof
3 Timer unit: 1e-06 s
4
5 Total time: 0.636188 s
6 File: a.py
7 Function: get_urls at line 5
8
9 Line # Hits Time Per Hit % Time Line Contents
10 ==============================================================
11 5 @profile
12 6 def get_urls():
13 7 1 613909.0 613909.0 96.5 response = requests.

get('https://missing.csail.mit.edu')
14 8 1 21559.0 21559.0 3.4 s = BeautifulSoup(

response.content, 'lxml')
15 9 1 2.0 2.0 0.0 urls = []
16 10 25 685.0 27.4 0.1 for url in s.find_all

('a'):
17 11 24 33.0 1.4 0.0 urls.append(url['

href'])

Memory

In languages like C or C++ memory leaks can cause your program to never release memory that it
doesn’t need anymore. To help in the process of memory debugging you can use tools like Valgrind
that will help you identify memory leaks.

In garbage collected languages like Python it is still useful to use amemory profiler because as long as

9

https://github.com/rkern/line_profiler
https://valgrind.org/


Debugging and profiling 2020-02-17

you have pointers to objects inmemory they won’t be garbage collected. Here’s an example program
and its associated output when running it with memory-profiler (note the decorator like in line-
profiler).

1 @profile
2 def my_func():
3 a = [1] * (10 ** 6)
4 b = [2] * (2 * 10 ** 7)
5 del b
6 return a
7
8 if __name__ == '__main__':
9 my_func()

1 $ python -m memory_profiler example.py
2 Line # Mem usage Increment Line Contents
3 ==============================================
4 3 @profile
5 4 5.97 MB 0.00 MB def my_func():
6 5 13.61 MB 7.64 MB a = [1] * (10 ** 6)
7 6 166.20 MB 152.59 MB b = [2] * (2 * 10 ** 7)
8 7 13.61 MB -152.59 MB del b
9 8 13.61 MB 0.00 MB return a

Event Profiling

As it was the case for strace for debugging, you might want to ignore the specifics of the code that
you are running and treat it like a black box when profiling. The perf command abstracts CPU differ-
ences away and does not report time or memory, but instead it reports system events related to your
programs. For example, perf can easily report poor cache locality, high amounts of page faults or
livelocks. Here is an overview of the command:

• perf list - List the events that can be traced with perf
• perf stat COMMAND ARG1 ARG2 - Gets counts of different events related a process or com-
mand

• perf record COMMAND ARG1 ARG2 - Records the run of a command and saves the statistical
data into a file called perf.data

• perf report - Formats and prints the data collected in perf.data

Visualization

Profiler output for real world programs will contain large amounts of information because of the in-
herent complexity of software projects. Humans are visual creatures and are quite terrible at reading

10

https://pypi.org/project/memory-profiler/
http://man7.org/linux/man-pages/man1/perf.1.html


Debugging and profiling 2020-02-17

large amounts of numbers and making sense of them. Thus there are many tools for displaying pro-
filer’s output in a easier to parse way.

One commonway to display CPU profiling information for sampling profilers is to use a Flame Graph,
which will display a hierarchy of function calls across the Y axis and time taken proportional to the X
axis. They are also interactive, letting you zoom into specific parts of the program and get their stack
traces (try clicking in the image below).

Flame Graph Search

test_bu..

x..

d..

s..

gener..

S..

_..

unary_..

execute_command_internal

x..

bash

shell_expand_word_list
red..

execute_builtin

__xst..

__dup2

main

_.. do_redirection_internal
do_redirections

do_f..

ext4_f..

__GI___li..

__..

expand_word_list_internal

unary_..

expan..tra..

path..

execute_command

two_ar..

cleanup_redi..

execute_command

do_sy..

trac..

__GI___libc_..

posixt..

execute_builtin_or_function

_..

[unknown]

tra..

expand_word_internal
_..

tracesys

ex..

_..

vfs_write

c..

test_co..

e..

u..
v..

SY..

i..

execute_simple_command

execute_command_internal

p.. gl..

s..sys_write

__GI___l..

expand_words

d..

__libc_start_main

d..

do_sync..

generi..

e..

reader_loop

sy..

execute_while_command

do_redirecti..

sys_o..

g..

__gene..

__xsta..

tracesys

c..

_..

execute_while_or_until

Call graphs or control flow graphs display the relationships between subroutines within a program
by including functions as nodes and functions calls between them as directed edges. When coupled
with profiling information such as number of calls and time taken, call graphs can be quite useful
for interpreting the flow of a program. In Python you can use the pycallgraph library to generate
them.

11

http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpu-bash-flamegraph.svg
http://pycallgraph.slowchop.com/en/master/


Debugging and profiling 2020-02-17

Figure 1: Call Graph

Resource Monitoring

Sometimes, the first step towards analyzing the performance of your program is to understand what
its actual resource consumption is. Programs often run slowly when they are resource constrained,
e.g. without enough memory or on a slow network connection. There are a myriad of command line
tools for probing and displaying different system resources like CPU usage, memory usage, network,
disk usage and so on.

• General Monitoring - Probably the most popular is htop, which is an improved version of top.
htop presents various statistics for the currently running processes on the system. htop has a
myriad of options and keybinds, some useful ones are: <F6> to sort processes, t to show tree
hierarchy and h to toggle threads. See also glances for similar implementationwith a great UI.
For getting aggregatemeasures across all processes, dstat is another nifty tool that computes

12

https://hisham.hm/htop/index.php
http://man7.org/linux/man-pages/man1/top.1.html
https://nicolargo.github.io/glances/
http://dag.wiee.rs/home-made/dstat/


Debugging and profiling 2020-02-17

real-time resource metrics for lots of different subsystems like I/O, networking, CPU utilization,
context switches, &c.

• I/O operations - iotop displays live I/O usage information and is handy to check if a process is
doing heavy I/O disk operations

• DiskUsage -dfdisplaysmetrics perpartitions anddudisplaysdiskusageper file for the current
directory. In these tools the -h flag tells the program to print with human readable format. A
more interactiveversionofdu isncduwhich lets younavigate foldersanddelete filesand folders
as you navigate.

• Memory Usage - free displays the total amount of free and usedmemory in the system. Mem-
ory is also displayed in tools like htop.

• Open Files - lsof lists file information about files opened by processes. It can be quite useful
for checking which process has opened a specific file.

• Network Connections and Config - ss lets youmonitor incoming and outgoing network pack-
ets statistics aswell as interface statistics. A commonuse case of ss is figuring outwhat process
is using a given port in a machine. For displaying routing, network devices and interfaces you
can use ip. Note that netstat and ifconfig have been deprecated in favor of the former
tools respectively.

• Network Usage - nethogs and iftop are good interactive CLI tools for monitoring network
usage.

If youwant to test these tools you can also artificially impose loads on themachine using the stress
command.

Specialized tools

Sometimes, black box benchmarking is all you need to determine what software to use. Tools like
hyperfine let you quickly benchmark command line programs. For instance, in the shell tools and
scripting lecture we recommended fd over find. We can use hyperfine to compare them in tasks
we run often. E.g. in the example below fdwas 20x faster than find in mymachine.

1 $ hyperfine --warmup 3 'fd -e jpg' 'find . -iname "*.jpg"'
2 Benchmark #1: fd -e jpg
3 Time (mean ± σ): 51.4 ms ± 2.9 ms [User: 121.0 ms, System:

160.5 ms]
4 Range (min … max): 44.2 ms … 60.1 ms 56 runs
5
6 Benchmark #2: find . -iname "*.jpg"
7 Time (mean ± σ): 1.126 s ± 0.101 s [User: 141.1 ms, System:

956.1 ms]
8 Range (min … max): 0.975 s … 1.287 s 10 runs
9
10 Summary

13

http://man7.org/linux/man-pages/man8/iotop.8.html
http://man7.org/linux/man-pages/man1/df.1.html
http://man7.org/linux/man-pages/man1/du.1.html
https://dev.yorhel.nl/ncdu
http://man7.org/linux/man-pages/man1/free.1.html
http://man7.org/linux/man-pages/man8/lsof.8.html
http://man7.org/linux/man-pages/man8/ss.8.html
http://man7.org/linux/man-pages/man8/ip.8.html
https://github.com/raboof/nethogs
http://www.ex-parrot.com/pdw/iftop/
https://linux.die.net/man/1/stress
https://github.com/sharkdp/hyperfine


Debugging and profiling 2020-02-17

11 'fd -e jpg' ran
12 21.89 ± 2.33 times faster than 'find . -iname "*.jpg"'

As itwas the case for debugging, browsers also comewith a fantastic set of tools for profilingwebpage
loading, letting you figure out where time is being spent (loading, rendering, scripting, &c). More info
for Firefox and Chrome.

Exercises

Debugging

1. Use journalctl on Linux or log show on macOS to get the super user accesses and com-
mands in the last day. If there aren’t any you can execute some harmless commands such as
sudo ls and check again.

2. Do this hands on pdb tutorial to familiarize yourself with the commands. For a more in depth
tutorial read this.

3. Install shellcheck and try checking the following script. What is wrong with the code? Fix it.
Install a linter plugin in your editor so you can get your warnings automatically.

1 #!/bin/sh
2 ## Example: a typical script with several problems
3 for f in $(ls *.m3u)
4 do
5 grep -qi hq.*mp3 $f \
6 && echo -e 'Playlist $f contains a HQ file in mp3 format'
7 done

1. (Advanced) Read about reversible debugging and get a simple example working using rr or
RevPDB. ## Profiling

2. Here are some sorting algorithm implementations. Use cProfile and line_profiler to
compare the runtime of insertion sort and quicksort. What is the bottleneck of each algorithm?
Use then memory_profiler to check the memory consumption, why is insertion sort better?
Check now the inplace version of quicksort. Challenge: Use perf to look at the cycle counts
and cache hits andmisses of each algorithm.

3. Here’s some (arguably convoluted) Python code for computing Fibonacci numbers using a func-
tion for each number.

1 #!/usr/bin/env python
2 def fib0(): return 0

14

https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Profiling_with_the_Built-in_Profiler
https://developers.google.com/web/tools/chrome-devtools/rendering-toolss
https://github.com/spiside/pdb-tutorial
https://realpython.com/python-debugging-pdb
https://www.shellcheck.net/
https://undo.io/resources/reverse-debugging-whitepaper/
https://rr-project.org/
https://morepypy.blogspot.com/2016/07/reverse-debugging-for-python.html
/static/files/sorts.py
https://docs.python.org/2/library/profile.html
https://github.com/rkern/line_profiler


Debugging and profiling 2020-02-17

3
4 def fib1(): return 1
5
6 s = """def fib{}(): return fib{}() + fib{}()"""
7
8 if __name__ == '__main__':
9
10 for n in range(2, 10):
11 exec(s.format(n, n-1, n-2))
12 # from functools import lru_cache
13 # for n in range(10):
14 # exec("fib{} = lru_cache(1)(fib{})".format(n, n))
15 print(eval("fib9()"))

Put the code into a file and make it executable. Install pycallgraph. Run the code as is with
pycallgraph graphviz -- ./fib.py and check the pycallgraph.png file. Howmany times is
fib0 called?. We can do better than that by memoizing the functions. Uncomment the commented
lines and regenerate the images. Howmany times are we calling each fibN function now?

1. A common issue is that a port you want to listen on is already taken by another process. Let’s
learn how to discover that process pid. First execute python -m http.server 4444 to
start a minimal web server listening on port 4444. On a separate terminal run lsof | grep
LISTEN to print all listening processes and ports. Find that process pid and terminate it by

running kill <PID>.

2. Limiting processes resources can be another handy tool in your toolbox. Try running stress -
c 3 and visualize the CPU consumptionwith htop. Now, execute taskset --cpu-list 0,2
stress -c 3 and visualize it. Is stress taking three CPUs? Why not? Read man taskset.

Challenge: achieve the same using cgroups. Try limiting thememory consumption of stress
-m.

3. (Advanced) The command curl ipinfo.io performs a HTTP request an fetches information
about your public IP. Open Wireshark and try to sniff the request and reply packets that curl
sent and received. (Hint: Use the http filter to just watch HTTP packets).

15

http://pycallgraph.slowchop.com/en/master/
http://man7.org/linux/man-pages/man1/taskset.1.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
https://www.wireshark.org/

	Table of Contents
	Printf debugging and Logging
	Third party logs
	Debuggers
	Specialized Tools
	Static Analysis

	Profiling
	Timing
	Profilers
	CPU
	Memory
	Event Profiling
	Visualization

	Resource Monitoring
	Specialized tools


	Exercises
	Debugging


