
Git 2020-02-15

Git

Version control systems (VCSs) - tools used to track changes to source code - helpmaintain a history of
changes - facilitate collaboration. - track changes to a folder and its contents in a series of snapshots,
where each snapshot encapsulates the entire state of files/folders within a top-level directory. - store
metadata: who created each snapshot, messages associated with each snapshot

Modern VCSs let you easily answer questions like:

• Who wrote this module?
• When was this particular line of this particular file edited? By whom? Why was it edited?
• Over the last 1000 revisions, when/why did a particular unit test stop working?

While other VCSs exist,Git is the de facto standard for version control. This XKCD comic captures Git’s
reputation:

JS 1

https://xkcd.com/1597/

Git 2020-02-15

Figure 1: xkcd 1597

While Git admittedly has an ugly interface, its underlying design and ideas are beautiful. While an
ugly interface has to be memorized, a beautiful design can be understood. For this reason, we give
a bottom-up explanation of Git, starting with its data model and later covering the command-line
interface. Once the data model is understood, the commands can be better understood, in terms of
how they manipulate the underlying data model.

JS 2

Git 2020-02-15

Git’s datamodel

Git has awell thought-outmodel that enables all the nice features of version control, likemaintaining
history, supporting branches, and enabling collaboration.

Snapshots

Git models the history of a collection of files and folders within some top-level directory as a series
of snapshots. In Git terminology, a file is called a “blob”, and it’s just a bunch of bytes. A directory is
called a “tree”, and it maps names to blobs or trees (so directories can contain other directories). A
snapshot is the top-level tree that is being tracked. For example, wemight have a tree as follows:

1 <root> (tree)
2 |
3 +- foo (tree)
4 | |
5 | + bar.txt (blob, contents = "hello world")
6 |
7 +- baz.txt (blob, contents = "git is wonderful")

The top-level tree contains two elements, a tree “foo” (that itself contains one element, a blob
“bar.txt”), and a blob “baz.txt”.

Modeling history: relating snapshots

How should a version control system relate snapshots? One simple model would be to have a linear
history. Ahistorywouldbea list of snapshots in time-order. Formany reasons, Git doesn’t usea simple
model like this.

In Git, a history is a directed acyclic graph (DAG) of snapshots. All this means is that each snapshot in
Git refers to a set of “parents”, the snapshots that preceded it. It’s a set of parents rather than a single
parent (as would be the case in a linear history) because a snapshot might descend from multiple
parents, for example due to combining (merging) two parallel branches of development.

Git calls these snapshots “commit”s. Visualizing a commit history might look something like this:

1 o <-- o <-- o <-- o
2 ^
3 \
4 --- o <-- o

In the ASCII art above, the os correspond to individual commits (snapshots). The arrows point to the
parent of each commit (it’s a “comes before” relation, not “comes after”). After the third commit, the

JS 3

Git 2020-02-15

history branches into two separate branches. This might correspond to, for example, two separate
features being developed in parallel, independently from each other. In the future, kkthese branches
may be merged to create a new snapshot that incorporates both of the features, producing a new
history that looks like this, with the newly createdmerge commit shown in bold:

1 o <-- o <-- o <-- o <---- o
2 ^ /
3 \ v
4 --- o <-- o

Commits in Git are immutable. This doesn’t mean that mistakes can’t be corrected, however; it’s just
that “edits” to the commit history are actually creating entirely new commits, and references (see
below) are updated to point to the new ones.

Datamodel, as pseudocode

Git’s data model written down in pseudocode:

1 // a file is a bunch of bytes
2 type blob = array<byte>
3
4 // a directory contains named files and directories
5 type tree = map<string, tree | file>
6
7 // a commit has parents, metadata, and the top-level tree
8 type commit = struct {
9 parent: array<commit>
10 author: string
11 message: string
12 snapshot: tree
13 }

It’s a clean, simple model of history.

Objects and content-addressing

An “object” is a blob, tree, or commit:

1 type object = blob | tree | commit

In Git data store, all objects are content-addressed by their SHA-1 hash.

1 objects = map<string, object>
2
3 def store(object):
4 id = sha1(object)

JS 4

https://en.wikipedia.org/wiki/SHA-1

Git 2020-02-15

5 objects[id] = object
6
7 def load(id):
8 return objects[id]

Blobs, trees, and commits are unified in this way: they are all objects. When they reference other
objects, they don’t actually contain them in their on-disk representation, but have a reference to them
by their hash.

For example, the tree for the example directory structure above (visualized using git cat-file -p
698281bc680d1995c5f4caaf3359721a5a58d48d), looks like this:

1 100644 blob 4448adbf7ecd394f42ae135bbeed9676e894af85 baz.txt
2 040000 tree c68d233a33c5c06e0340e4c224f0afca87c8ce87 foo

The tree itself contains pointers to its contents, baz.txt (a blob) and foo (a tree). If we look
at the contents addressed by the hash corresponding to baz.txt with git cat-file -p 4448
adbf7ecd394f42ae135bbeed9676e894af85, we get the following:

1 git is wonderful

References

Now, all snapshots can be identified by their SHA-1 hash. That’s inconvenient, because humans aren’t
good at remembering strings of 40 hexadecimal characters.

Git’s solution to this problem is human-readable names for SHA-1 hashes, called “references”. Refer-
ences are pointers to commits. Unlike objects, which are immutable, references are mutable (can be
updated to point to a new commit). For example, the master reference usually points to the latest
commit in the main branch of development.

1 references = map<string, string>
2
3 def update_reference(name, id):
4 references[name] = id
5
6 def read_reference(name):
7 return references[name]
8
9 def load_reference(name_or_id):
10 if name_or_id in references:
11 return load(references[name_or_id])
12 else:
13 return load(name_or_id)

JS 5

Git 2020-02-15

With this, Git can use human-readable names like “master” to refer to a particular snapshot in the
history, instead of a long hexadecimal string.

One detail is that we often want a notion of “where we currently are” in the history, so that when we
take a new snapshot, we know what it is relative to (how we set the parents field of the commit). In
Git, that “where we currently are” is a special reference called “HEAD”.

Repositories

Finally, we can define what (roughly) is a Git repository: it is the data objects and references.

On disk, all Git stores is objects and references: that’s all there is to Git’s data model. All git com-
mands map to some manipulation of the commit DAG by adding objects and adding/updating refer-
ences.

Whenever you’re typing in any command, think about what manipulation the command is making to
the underlying graph data structure. Conversely, if you’re trying to make a particular kind of change
to the commit DAG, e.g. “discard uncommitted changes and make the ‘master’ ref point to commit
5d83f9e”, there’s probably a command to do it (e.g. in this case, git checkout master; git
reset --hard 5d83f9e).

Staging area

This is another concept that’s orthogonal to the data model, but it’s a part of the interface to create
commits.

One way you might imagine implementing snapshotting as described above is have a “create snap-
shot” command that creates a new snapshot based on the current state of the working directory.
Some version control tools work like this, but not Git. We want clean snapshots, and it might not
always be ideal to make a snapshot from the current state. For example, imagine a scenario where
you’ve implemented two separate features, and youwant to create two separate commits, where the
first introduces the first feature, and the next introduces the second feature. Or imagine a scenario
where you have debugging print statements added all over your code, along with a bugfix; you want
to commit the bugfix while discarding all the print statements.

Git accommodates such scenarios by allowing you to specify whichmodifications should be included
in the next snapshot through amechanism called the “staging area”.

JS 6

Git 2020-02-15

Git command-line interface

To avoid duplicating information, we’re not going to explain the commands below in detail. See the
highly recommended Pro Git for more information, or watch the lecture video.

Basics

The git init command initializes a new Git repository, with repository metadata being stored in
the .git directory:

1 $ mkdir myproject
2 $ cd myproject
3 $ git init
4 Initialized empty Git repository in /home/missing-semester/myproject/.

git/
5 $ git status
6 On branch master
7
8 No commits yet
9
10 nothing to commit (create/copy files and use "git add" to track)

Howdowe interpret this output? “No commits yet” basicallymeansour versionhistory is empty. Let’s
fix that.

1 $ echo "hello, git" > hello.txt
2 $ git add hello.txt
3 $ git status
4 On branch master
5
6 No commits yet
7
8 Changes to be committed:
9 (use "git rm --cached <file>..." to unstage)
10
11 new file: hello.txt
12
13 $ git commit -m 'Initial commit'
14 [master (root-commit) 4515d17] Initial commit
15 1 file changed, 1 insertion(+)
16 create mode 100644 hello.txt

With this, we’ve git added a file to the staging area, and then git commited that change, adding
a simple commit message “Initial commit”. If we didn’t specify a -m option, Git would open our text
editor to allow us type a commit message.

Now that we have a non-empty version history, we can visualize the history. Visualizing the history as

JS 7

https://git-scm.com/book/en/v2

Git 2020-02-15

a DAG can be especially helpful in understanding the current status of the repo and connecting it with
your understanding of the Git data model.

The git log command visualizes history. By default, it shows a flattened version, which hides the
graph structure. If you use a command like git log --all --graph --decorate, it will show
you the full version history of the repository, visualized in graph form.

1 $ git log --all --graph --decorate
2 * commit 4515d17a167bdef0a91ee7d50d75b12c9c2652aa (HEAD -> master)
3 Author: Missing Semester <missing-semester@mit.edu>
4 Date: Tue Jan 21 22:18:36 2020 -0500
5
6 Initial commit

This doesn’t look all that graph-like, because it only contains a single node. Let’s make some more
changes, author a new commit, and visualize the history once more.

1 $ echo "another line" >> hello.txt
2 $ git status
3 On branch master
4 Changes not staged for commit:
5 (use "git add <file>..." to update what will be committed)
6 (use "git checkout -- <file>..." to discard changes in working

directory)
7
8 modified: hello.txt
9
10 no changes added to commit (use "git add" and/or "git commit -a")
11 $ git add hello.txt
12 $ git status
13 On branch master
14 Changes to be committed:
15 (use "git reset HEAD <file>..." to unstage)
16
17 modified: hello.txt
18
19 $ git commit -m 'Add a line'
20 [master 35f60a8] Add a line
21 1 file changed, 1 insertion(+)

Now, if we visualize the history again, we’ll see some of the graph structure:

1 * commit 35f60a825be0106036dd2fbc7657598eb7b04c67 (HEAD -> master)
2 | Author: Missing Semester <missing-semester@mit.edu>
3 | Date: Tue Jan 21 22:26:20 2020 -0500
4 |
5 | Add a line
6 |
7 * commit 4515d17a167bdef0a91ee7d50d75b12c9c2652aa
8 Author: Anish Athalye <me@anishathalye.com>

JS 8

Git 2020-02-15

9 Date: Tue Jan 21 22:18:36 2020 -0500
10
11 Initial commit

Also, note that it shows the current HEAD, along with the current branch (master).

We can look at old versions using the git checkout command.

1 $ git checkout 4515d17 # previous commit hash; yours will be different
2 Note: checking out '4515d17'.
3
4 You are in 'detached HEAD' state. You can look around, make

experimental
5 changes and commit them, and you can discard any commits you make in

this
6 state without impacting any branches by performing another checkout.
7
8 If you want to create a new branch to retain commits you create, you

may
9 do so (now or later) by using -b with the checkout command again.

Example:
10
11 git checkout -b <new-branch-name>
12
13 HEAD is now at 4515d17 Initial commit
14 $ cat hello.txt
15 hello, git
16 $ git checkout master
17 Previous HEAD position was 4515d17 Initial commit
18 Switched to branch 'master'
19 $ cat hello.txt
20 hello, git
21 another line

Git can show you how files have evolved (differences, or diffs) using the git diff command:

1 $ git diff 4515d17 hello.txt
2 diff --git c/hello.txt w/hello.txt
3 index 94bab17..f0013b2 100644
4 --- c/hello.txt
5 +++ w/hello.txt
6 @@ -1 +1,2 @@
7 hello, git
8 +another line

• git help <command>: get help for a git command
• git init: creates a new git repo, with data stored in the .git directory
• git status: tells you what’s going on
• git add <filename>: adds files to staging area

JS 9

Git 2020-02-15

• git commit: creates a new commit

– Write good commit messages!

• git log: shows a flattened log of history
• git log --all --graph --decorate: visualizes history as a DAG
• git diff <filename>: show differences since the last commit
• git diff <revision> <filename>: shows differences in a file between snapshots
• git checkout <revision>: updates HEAD and current branch

Branching andmerging

Branching allows you to “fork” version history. It can be helpful for working on independent fea-
tures or bug fixes in parallel. The git branch command can be used to create new branches; git
checkout -b <branch name> creates and branch and checks it out.

Merging is the opposite of branching: it allows you to combine forked version histories, e.g. merging
a feature branch back into master. The git merge command is used for merging.

• git branch: shows branches
• git branch <name>: creates a branch
• git checkout -b <name>: creates a branch and switches to it

– same as git branch <name>; git checkout <name>

• git merge <revision>: merges into current branch
• git mergetool: use a fancy tool to help resolve merge conflicts
• git rebase: rebase set of patches onto a new base

Remotes

• git remote: list remotes
• git remote add <name> <url>: add a remote
• git push <remote> <local branch>:<remote branch>: send objects to remote, and
update remote reference

• git branch --set-upstream-to=<remote>/<remote branch>: set up correspondence
between local and remote branch

• git fetch: retrieve objects/references from a remote
• git pull: same as git fetch; git merge
• git clone: download repository from remote

JS 10

https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

Git 2020-02-15

Undo

• git commit --amend: edit a commit’s contents/message

• git reset HEAD <file>: unstage a file

• git checkout -- <file>: discard changes

• git reset: moves branch reference backwards in time to an older commit

– moves a branch backwards in time as if the commit had never taken place
– git reset HEAD~1: moves HEAD back by one commit

• git revert: for reversing changes already propagated to the remote. Adds a new commit of
changes

Relative Refs

Relative refs are useful to refer to commits without having to type out the hash - ^: move upwards by
one commit - ^<num>: move upwards to parent reference e.g. for a merge commit with multiple par-
ents (default: 1) - ~<num>: move upwards by num commits - e.g. - git checkout master^: checks
out first parent ofmaster - master^ ^: grandparent of master - HEAD~4: 4th ancestor of HEAD - chain-
ing e.g. git checkout HEAD~^2~2: move to parent commit, move to second co-parent of commit,
move two commits up - Applications - Branch forcing: directly reassign a branch to a commit - git
branch -f master HEAD~3 forces master branch to 3 parents behind HEAD

Moving work around

• git cherry-pick <commit1> <commit2> <...>: copies a series of commits below cur-
rent location, i.e. add new commit corresponding to commit1, then commit2, etc.

• git rebase -i interactive rebase. Opens a text editor showing which commits are about to
be copied below the rebase target. You can then

– reorder commits by changing order
– omit commits by setting pick off
– squash commits (i.e. combine multiple commits)

Finding your way around

• git tag <name> to apply name to a specific commit e.g. version number
• git describe describes where you are relative to nearest anchor (tagged commit)

JS 11

Git 2020-02-15

– output: <tag>_<numCommits>_g<hash>

* tag: tag of nearest anchor

* numCommits: number of commits away to anchor

* hash: hash of commit being described (not the anchor)

Advanced Git

• git config: Git is highly customizable
• git clone --shallow: clone without entire version history
• git add -p: interactive staging
• git rebase -i: interactive rebasing
• git blame: show who last edited which line
• git stash: temporarily removemodifications to working directory
• git bisect: binary search history (e.g. for regressions)
• .gitignore: specify intentionally untracked files to ignore

Miscellaneous

• GUIs: There are many GUI clients out there for Git. We personally don’t use them and use the
command-line interface instead.

• Shell integration: It’s super handy to have aGit status as part of your shell prompt (zsh,). Often
included in frameworks like Oh My Zsh.

• Editor integration: Similarly to the above, handy integrations withmany features. fugitive.vim
is the standard one for Vim.

• Workflows: we taught you the datamodel, plus some basic commands; we didn’t tell youwhat
practices to follow when working on big projects (and there are many different approaches).

• GitHub: Git is not GitHub. GitHub has a specific way of contributing code to other projects,
called pull requests.

• Other Git providers: GitHub is not special: there aremany Git repository hosts, like GitLab and
BitBucket.

Resources

• Pro Git is highly recommended reading. Going through Chapters 1–5 should teach you most
of what you need to use Git proficiently, now that you understand the data model. The later

JS 12

https://git-scm.com/docs/git-config
https://git-scm.com/docs/gitignore
https://git-scm.com/downloads/guis
https://github.com/olivierverdier/zsh-git-prompt
https://github.com/ohmyzsh/ohmyzsh
https://github.com/tpope/vim-fugitive
https://nvie.com/posts/a-successful-git-branching-model/
https://www.endoflineblog.com/gitflow-considered-harmful
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests
https://about.gitlab.com/
https://bitbucket.org/
https://git-scm.com/book/en/v2

Git 2020-02-15

chapters have some interesting, advancedmaterial.
• Oh Shit, Git!?! is a short guide on how to recover from some common Git mistakes.
• Git for Computer Scientists is a short explanation of Git’s datamodel, with less pseudocode and
more fancy diagrams than these lecture notes.

• Git from theBottomUp is a detailed explanation of Git’s implementation details beyond just the
data model, for the curious.

• How to explain git in simple words
• Learn Git Branching is a browser-based game that teaches you Git.

Exercises

1. If you don’t have any past experiencewith Git, either try reading the first couple chapters of Pro
Git or go through a tutorial like Learn Git Branching. As you’re working through it, relate Git
commands to the data model.

2. Clone the repository for the class website. git clone https://github.com/missing-
semester/missing-semester

1. Explore the version history by visualizing it as a graph. git log --graph
2. Who was the last person to modify README.md? (Hint: use git log with an argument)

git log -n 1 README.md
3. Whatwas the commitmessage associatedwith the lastmodification to the collections

: line of _config.yml? (Hint: use git blame and git show)

1 git blame -L /collections:/ _config.yml
2 git show a88b4eac

3. One commonmistake when learning Git is to commit large files that should not bemanaged by
Git or adding sensitive information. Try adding a file to a repository,making some commits and
then deleting that file from history (youmay want to look at this).

4. Clone some repository from GitHub, and modify one of its existing files. What happens when
you do git stash? What do you see when running git log --all --oneline? Run git
stash pop to undo what you did with git stash. In what scenario might this be useful?

5. Like many command line tools, Git provides a configuration file (or dotfile) called ~/.
gitconfig. Create an alias in ~/.gitconfig so that when you run git graph, you get the
output of git log --all --graph --decorate --oneline.

6. You can define global ignore patterns in ~/.gitignore_global after running git config
--global core.excludesfile ~/.gitignore_global. Do this, and set up your global

gitignore file to ignore OS-specific or editor-specific temporary files, like .DS_Store.

JS 13

https://ohshitgit.com/
https://eagain.net/articles/git-for-computer-scientists/
https://jwiegley.github.io/git-from-the-bottom-up/
https://smusamashah.github.io/blog/2017/10/14/explain-git-in-simple-words
https://learngitbranching.js.org/
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://learngitbranching.js.org/
https://github.com/missing-semester/missing-semester
https://help.github.com/articles/removing-sensitive-data-from-a-repository/

Git 2020-02-15

7. Clone the repository for the classwebsite, finda typoor someother improvement youcanmake,
and submit a pull request on GitHub.

JS 14

https://github.com/missing-semester/missing-semester

	Git
	Git's data model
	Snapshots
	Modeling history: relating snapshots
	Data model, as pseudocode
	Objects and content-addressing
	References
	Repositories

	Staging area
	Git command-line interface
	Basics
	Branching and merging
	Remotes
	Undo
	Relative Refs
	Moving work around
	Finding your way around

	Advanced Git
	Miscellaneous
	Resources
	Exercises

