
Data Wrangling 2020-02-11

Table of Contents

• Example: checking who has logged into a server

• sed

• Regular Expressions

– Email address matching: harder than it seems

• awk

• Data analysis

• Data wrangling: Massaging data from one format to another more useful format

• Pretty much any use of the pipe |

• logs are a common use case

Example: checking who has logged into a server

1 $ ssh myserver 'journalctl | grep sshd | grep "Disconnected from"' >
ssh.log

2 $ less ssh.log

ssh into myserver. Query the systemd journal, search it for ssh related entries, and then search those
for any containing the phrase “Disconnected from”. Output it as a file ssh.log so that we don’t have to
keep connected to the server.
Then open the log with pagination using less

sed

• sed: stream editor, builds on top of old ed editor

– give short commands for how tomodify file, rather than directly manipulating contents
– s: substitution; written in form s/REGEX/SUBSTITUTION

* REGEX: regular expression to search for

* SUBSTITUTION: the text you want to substitute matching text with

1 ssh myserver journalctl`
2 | grep sshd
3 | grep "Disconnected from"
4 | sed 's/.*Disconnected from //'

1

Data Wrangling 2020-02-11

Regular Expressions

• regexr
• used to match text to a specified pattern
• regular expressions are usually surrounded by /
• most ASCII characters have normallymeanings, but some are specialmatching characters, with
meaning varying from system to system

Typically:

• .: any single character, except newline
• *: 0+ of preceding match
• +: 1+ of preceding match
• [abc]: any one character of a, b, and c
• (RX1|RX2): matches RX1 or RX2
• ^: start of the line
• $: end of the line

NB sed requires you to escape special characters with \ for them to match. Typically the inverse is
true.

• capture groups: any text surrounded by parentheses is stored in a numbered capture group,
available as \1, \2, …

1 | sed -E 's/.*Disconnected from (invalid |authenticating)?user (.*) [^
]+ port [0-9]+(\[preauth\])?$/\2/'

This regex matches any number of any characters, followed by “Disconnected from”, followed by an
optional “invalid” or “authenticating”, followed by “user”, following by any number of characters, fol-
lowed by 1 or more characters other than space, followed by ” port “, followed by 1 or more digits,
with an optional suffix of”[preauth]”, and then the end of the line. Keep the second capture group
containing the username

Email address matching: harder than it seems

• ~99% of emails matched
• 99.99% of emails matched

Now sort by usernames, and collapse to distinct values, with a count:

1 ssh myserver journalctl
2 | grep sshd

2

https://regexr.com/
https://www.regular-expressions.info/email.html
https://emailregex.com/

Data Wrangling 2020-02-11

3 | grep "Disconnected from"
4 | sed -E 's/.*Disconnected from (invalid |authenticating)?user (.*)

[^]+ port [0-9]+(\[preauth\])?$/\2/'
5 | sort | uniq -c
6 | sort -nk1,1 # -n: sort in numeric order;
7 # -k1,1: sort by first whitespace-separated column only
8 | tail -n10 # take the 10 most common ones
9 | awk '{print $2}' # awk is another editor. see below
10 | paste -sd, # combines lines (-s) by delimiter ","

awk

• awk is a programming language;
• very good at processing text streams
• programscompriseanoptionalpatternplusablock specifyingbehaviour formatchesonagiven
line. The default pattern matches all lines.

• Inside the block:

– $0: entire line
– $1-$n: n-th field of the line, when separated by the awk field (default: whitespace, specify
alternative character with -F)

• {print $2} thenmeans print the second field of each line (the username)
• see class notes for more detail

Data analysis

1 | paste -sd+ # add numbers on each line together
2 | bc -l

1 echo "2*($(data | paste -sd+)" | bc -l

Stats: st or R

1 ssh myserver journalctl
2 | grep sshd
3 | grep "Disconnected from"
4 | sed -E 's/.*Disconnected from (invalid |authenticating)?user (.*)

[^]+ port [0-9]+(\[preauth\])?$/\2/'
5 | sort | uniq -c
6 | awk '{print $1}' | R --slave -e 'x <- scan(file="stdin", quiet=TRUE)

; summary(x)'

• basic plotting: gnuplot

3

https://missing.csail.mit.edu/2020/data-wrangling/

Data Wrangling 2020-02-11

1 ssh myserver journalctl
2 | grep sshd
3 | grep "Disconnected from"
4 | sed -E 's/.*Disconnected from (invalid |authenticating)?user (.*)

[^]+ port [0-9]+(\[preauth\])?$/\2/'
5 | sort | uniq -c
6 | sort -nk1,1 | tail -n10
7 | gnuplot -p -e 'set boxwidth 0.5; plot "-" using 1:xtic(2) with boxes

'

• binary data: these tools also work for binary data.
e.g. capture image with ffmpeg, convert to grayscale, compress it, send it to a remotemachine,
decompress it, make a copy, display it:

1 ffmpeg -loglevel panic -i /dev/video0 -frames 1 -f image2 -
2 | convert - -colorspace gray -
3 | gzip
4 | ssh mymachine 'gzip -d | tee copy.jpg | env DISPLAY=:0 feh -'

Exercises

1. Take this short interactive regex tutorial.

2. Find the number of words (in /usr/share/dict/words) that contain at least three as and
don’t have a 's ending. What are the three most common last two letters of those words? sed
’s y command, or the tr program, may help you with case insensitivity. How many of those
two-letter combinations are there? And for a challenge: which combinations do not occur?

3. To do in-place substitution it is quite tempting to do something like sed s/REGEX/
SUBSTITUTION/ input.txt > input.txt. However this is a bad idea, why? Is this
particular to sed? Use man sed to find out how to accomplish this.

4. Find your average,median, andmax systemboot timeover the last tenboots. Usejournalctl
on Linux and log show onmacOS, and look for log timestamps near the beginning and end of
each boot. On Linux, they may look something like:

1 Logs begin at ...

and

1 systemd[577]: Startup finished in ...

OnmacOS, look for:

4

https://regexone.com/
https://eclecticlight.co/2018/03/21/macos-unified-log-3-finding-your-way/

Data Wrangling 2020-02-11

1 === system boot:

and

1 Previous shutdown cause: 5

5. Look for bootmessages that are not shared between your past three reboots (see journalctl
’s -b flag). Break this task down intomultiple steps. First, find away to get just the logs from the
past three boots. There may be an applicable flag on the tool you use to extract the boot logs,
or you can use sed '0,/STRING/d' to remove all lines previous to one that matches STRING.
Next, remove any parts of the line that always varies (like the timestamp). Then, de-duplicate
the input lines and keep a count of each one (uniq is your friend). And finally, eliminate any line
whose count is 3 (since itwas shared among all the boots).

6. Find an online data set like this one, this one. or maybe one from here. Fetch it using curl
and extract out just two columns of numerical data. If you’re fetching HTML data, pupmight be
helpful. For JSON data, try jq. Find the min and max of one column in a single command, and
the sum of the difference between the two columns in another.

Solutions

1. completed
2. Number of words with ≥ 3 a’s not finishing in ’s

1 grep -E "\w*[aA]\w*a\w*a\w*[^(\'s)]$" words \
2 | wc -w # word count, with output words flag
3 # 435

Equivalently

1 grep -c -E "\w*[aA]\w*a\w*a\w*[^(\'s)]$" words
2 # 435

Three most common last two letters

1 grep -E "^\w*[aA]\w*a\w*a\w*[^(\'s)]$" words
2 | sed -E 's/^\w*(\w{3})$/\1/'
3 | sort
4 | uniq -c
5 | sort -rnk1,1
6 | head -n3
7 # 53 ian
8 # 31 lly
9 # 20 ion

5

https://stats.wikimedia.org/EN/TablesWikipediaZZ.htm
https://ucr.fbi.gov/crime-in-the-u.s/2016/crime-in-the-u.s.-2016/topic-pages/tables/table-1
https://www.springboard.com/blog/free-public-data-sets-data-science-project/
https://github.com/EricChiang/pup
https://stedolan.github.io/jq/

Data Wrangling 2020-02-11

1. As sed operates on file streams, you would be reading and writing to the same file at the same
time. The os may not allow this, and if it did things could end up corrupted. There is an inplace
flag -i for sedWhich allows you to do this.

2. My journalctl doesn’t have any entries (WSL). ssh into one of my raspberry pi’s and
download it’s journalctl It doesn’t appear to have any startup info. There is literally nothing
interesting in the file…

3. <– todo –>
4.

1 curl https://ucr.fbi.gov/crime-in-the-u.s/2016/crime-in-the-u.s.-2016/
topic-pages/tables/table-1 > crime_rate.html

2 cat crime_rate.html | pup 'table .group0,.group3 text{}' | grep -E "[^\
n]" | grep -oE "([0-9]{4})" > year

3 cat crime_rate.html | pup 'table .group0,.group3 text{}' | grep -E "[^\
n]" | grep -oE "([0-9]{3}\.[0-9])" > violent_crime_rate

4 paste -d " " year violent_crime_rate > crime_rate

Note this is an instance where you could use tee to pipe the common output of the first grep to each
second grep, and then use this as an input to the paste.

year violent_crime_rate

1997 611.0

1998 567.6

1999 523.0

2000 506.5

2001 504.5

2002 494.4

2003 475.8

2004 463.2

2005 469.0

2006 479.3

2007 471.8

2008 458.6

2009 431.9

2010 404.5

6

Data Wrangling 2020-02-11

year violent_crime_rate

2011 387.1

2012 387.8

2013 369.1

2014 361.6

2015 373.7

2016 386.3

Subtract column 2 from column 1

1 cat crime_rate | awk '{print $1-$2}'

Summary stats, using st

1 cat crime_rate | awk '{print $1}' | st
2 # N min max sum mean stddev
3 # 20 1997 2016 40130 2006.5 5.91608

Let’s plot it

1 $ gnuplot -p -e "set terminal dumb; plot 'crime_rate' with points pt 2"
2 650

+--+

3 | + + + + + + + + +
|

4 | 'crime_rate' B
|

5 600 |-+B
+-|

6 |

|
7 | B

|
8 |

|
9 550 |-+

+-|
10 | B

|
11 |

7

https://github.com/nferraz/st

Data Wrangling 2020-02-11

|
12 500 |-+ B B B

+-|
13 | B

|
14 | B B B B

|
15 450 |-+ B

+-|
16 |

|
17 | B

|
18 | B

|
19 400 |-+ B

+-|
20 | B B

|
21 | + + + + + + + + B B

|
22 350

+--+

23 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
2016

8

	Table of Contents
	Example: checking who has logged into a server
	sed
	Regular Expressions
	Email address matching: harder than it seems

	awk
	Data analysis

	Exercises
	Solutions

