
Shell scripting 2020-02-08

Table of Contents

• Assignment and string delimiters
• Functions
• Special Variables
• Streams
• Stream redirection
• Return codes and conditional execution
• Command and process substitution
• Shell globbing
• Shebang
• Shell functions and scripts: the differences
• Finding how to use commands
• Finding files

– find
– fd
– locate

• Finding code
• History: Finding shell commands

– History-based autosuggestions

• Directory Navigation
• Alternative Shells
• Exercises
• Solutions

Based on https://missing.csail.mit.edu/2020/shell-tools/

• shellcheck: handy tool to check your bash scripts (source)

– install via sudo apt-get install shellcheck

Assignment and string delimiters

• =: assignment; n.b. no spaces

1 $ foo=bar
2 $ echo $foo
3 bar

1

https://www.shellcheck.net/
https://github.com/koalaman/shellcheck

Shell scripting 2020-02-08

• : space character performs argument splitting

1 $ foo = bar
2 Command 'foo' not found

• $foo: access value of variable foo

• ' is for literal strings; bash performs no interpretation

• ": bash will substitute variable values

1 $ foo=bar
2 $ echo "Value is $foo"
3 Value is bar
4 $ echo 'Value is $foo'
5 $ Value is $foo

• ;: separate multiple commands on a single line

Functions

bash allows you to define functions

1 mcd () {
2 mkdir -p "$1"
3 cd "$1"
4 }

• $1: first argument to script/function

Special Variables

bash has many special variables to refer to arguments, error codes etc. Reference list. - $0: script
name - $1 to $9: script arguments. $1 is the first argument, … - $@: all arguments - $#: number
of arguments - $?: return code of the previous command - $$: process id for the current script - !!:
entire last commandwitharguments -whenexecution failsdue to lackofpermissions, quicklyexecute
last command with sudo by doing sudo !! - $_: last argument from last command. If you are in an
interactive shell, you can also quickly get this value by typing Esc followed by .

Streams

• STDIN: standard input stream
• STDOUT: standard output stream
• STDERR: standard error output stream

2

https://www.tldp.org/LDP/abs/html/special-chars.html

Shell scripting 2020-02-08

Stream redirection

• 1> foo: redirect STDOUT to foo
• 2> foo: redirect STDERR to foo
• &> foo: redirect both STDOUT and STDERR to foo

Return codes and conditional execution

• 0: everything executed correctly
• otherwise: an error occurred
• true program always has 0 return code
• false programs always has 1 return code
• Exit codes can be used to conditionally execute commands:

– &&: and
– ||: or

1 $ false || echo "Oops, fail"
2 Oops, fail

As false returns 1, echo is executed

1 $ true || echo "Will not be printed"
2 $

As true returns 0, echo will not be executed

1 $ true && echo "Things went well"
2 Things went well

The second command executes as the first runs without errors

1 $ false && echo "Will not be printed"
2 $

The second command doesn’t execute as the first returns an error state

1 $ false ; echo "This will always run"
2 This will always run

Command and process substitution

1 $ foo=$(pwd)
2 $ echo $foo

3

Shell scripting 2020-02-08

3 /home/user/

Here we are getting the output of command pwd and storing it as a variable.

• Command substitution: $(CMD) executes CMD and substitutes output of command in-place.

• for file in $(ls): shell calls ls, then iterates over those values

• process substitution: <(CMD) executes CMD and places output in a temporary file, and substi-
tutes with that file name. This is useful if command expects values to be passed by file instead
of STDIN

• diff <(ls foo)<(ls bar): show differences between files in dirs foo and bar by first cre-
ating files listing foo and bar, and then diffing them

Here’s an example that iterates through provided arguments greps for string foobar and appends to
the file as a comment if it isn’t found

1 #!/bin/bash
2
3 echo "Starting program at $(date)" # Date will be substituted
4
5 echo "Running program $0 with $# arguments with pid $$"
6
7 for file in $@; do
8 grep foobar $file > /dev/null 2> /dev/null
9 # When pattern is not found, grep has exit status 1
10 # We redirect STDOUT and STDERR to a null register since we do not

care about them
11 if [[$? -ne 0]]; then # if return code of last command is not

equal to 0
12 echo "File $file does not have any foobar, adding one"
13 echo "# foobar" >> "$file"
14 fi
15 done

• /dev/null is a special device you can write to and input will be discarded
• Comparisons reference: manpage for test

– -f: if a file exists

• Use [[]] over [] as chances ofmistakes are reduced, but this is not portable to sh (Explana-
tion)

Shell globbing

Shell globbing: expanding expression e.g. filename expansion

4

http://man7.org/linux/man-pages/man1/test.1.html
http://mywiki.wooledge.org/BashFAQ/031
http://mywiki.wooledge.org/BashFAQ/031

Shell scripting 2020-02-08

• wildcards

– ?: match one character
– *: match any number of chars

• {}: common substring expansion

– e.g. convert image.{png,jpg} expands to convert image.png image.jpg

More examples: * cp /path/to/project/{foo,bar,baz}.sh /newpath expands to cp /path
/to/project/foo.sh /path/to/project/bar.sh /path/to/project/baz.sh /newpath *
Combinations: mv *{.py,.sh} foldermoves all *.py and *.sh files to folder

This creates files foo/a, foo/b, … foo/h, bar/a, bar/b, … bar/h:

1 $ mkdir foo bar
2 $ touch {foo,bar}/{a..j}
3 $ touch foo/x bar/y

Show differences between files in foo and bar

1 $ diff <(ls foo) <(ls bar)
2 # Outputs
3 # < x
4 # ---
5 # > y

• |: pipes are also import in scripting; putting output of one program as input to next program
• bash scripting

Shebang

e.g. at start of script you will see line #!/bin/bash * #!: shebang/hashbang indicates this is to be
interpreted as an executable file * /bin/bash: indicates the program loader should run this file,
with the path to the current script as the first argument * best practice: write shebang lines using
(env)[http://man7.org/linux/man-pages/man1/env.1.html] command to resolve to wherever the com-
mand lives in the system, maximising script portability. This will use PATH environment variable *
e.g. #!/usr/bin/env python

Shell functions and scripts: the differences

• functions need to be in shell language; scripts can be in any language, hence the shebang
• functions are loaded when the definition is read; scripts are loaded at time of execution

5

Shell scripting 2020-02-08

• functions are executed in current shell environment; scripts execute in their own process

– functions can modify environment variables e.g. change current directory, while scripts
cannot

– scripts are passed by value environment variables that have been exported using export

Shell Tools

Finding how to use commands

Given a command howdo you go about finding out what it does and its different options? 1. Runwith
-h or --help flags 2. Look at man page for more detail 3. Interactive tools (e.g. ncurses): :help or ?
4. TLDR pages focuses on giving example use cases of a command so you can quickly figure outwhich
options to use. * e.g. tldr pages for tar and ffmpeg

Finding files

find

• find recursively searches for files matching some criteria. Some examples:

1 # Find all directories named src
2 find . -name src -type d
3 # Find all python files that have a folder named test in their path
4 find . -path '**/test/**/*.py' -type f
5 # Find all files modified in the last day
6 find . -mtime -1
7 # Find all zip files with size in range 500k to 10M
8 find . -size +500k -size -10M -name '*.tar.gz'

Find can also perform actions on the stuff it finds, which helps simplify monotonous tasks.

1 # Delete all files with .tmp extension
2 find . -name '*.tmp' -exec rm {} \;
3 # Find all PNG files and convert them to JPG
4 find . -name '*.png' -exec convert {} {.}.jpg \;

fd

find has tricky syntax: e.g. to find files thatmatch somepattern PATTERN you have to execute find
-name '*PATTERN*' (or -iname if you want the patternmatching to be case insensitive). * you can

6

http://man7.org/linux/man-pages/man1/export.1p.html
https://tldr.sh/
https://tldr.ostera.io/tar
https://tldr.ostera.io/ffmpeg
http://man7.org/linux/man-pages/man1/find.1.html

Shell scripting 2020-02-08

start building aliases for those scenarios but as part of the shell philosophy is good to explore using
alternatives. * you can find (or even write yourself) replacements for some. e.g. fd is a simple, fast
and user-friendly alternative to find. * colorized output, default regex matching, Unicode support,
more intuitive syntax * syntax to find a pattern PATTERN is fd PATTERN.

locate

locate * uses a compiled index/database for quickly searching * database that is updated using
updatedb. * in most systems updatedb is updated daily via cron * trade-off compared to find/fd
vs locate is between speed vs freshness. * find etc. can files using attributes (e.g. file size, modifica-
tion time or file permissions) while locate just uses the name. * in depth comparison

Finding code

• You want to search for all files that contain some pattern, along with where pattern occurs in
those files.

• grep: generic tool for matching patterns from input text

– many flags, very versatile
– -C for getting Context around the matching line. e.g. grep -C 5 will print 5 lines before
and after the match.

– -v for inverting the match, i.e. print all lines that do notmatch the pattern
– -R Recursively goes into directories and look for text files for the matching string

But grep -R can be improved inmanyways, such as ignoring .git folders, usingmulti CPU support,
etc. Various alternatives, but pretty much cover same use case: * ack * ag and rg. * Recommended:
ripgrep (rg) as fast and intuitive

Some examples:

1 # Find all python files where I used the requests library
2 rg -t py 'import requests'
3 # Find all files (including hidden files) without a shebang line
4 rg -u --files-without-match "^#!"
5 # Find all matches of foo and print the following 5 lines
6 rg foo -A 5
7 # Print statistics of matches (# of matched lines and files)
8 rg --stats PATTERN

7

https://github.com/sharkdp/fd
http://man7.org/linux/man-pages/man1/locate.1.html
http://man7.org/linux/man-pages/man1/updatedb.1.html
http://man7.org/linux/man-pages/man8/cron.8.html
https://unix.stackexchange.com/questions/60205/locate-vs-find-usage-pros-and-cons-of-each-other
http://man7.org/linux/man-pages/man1/grep.1.html
https://beyondgrep.com/
https://github.com/ggreer/the_silver_searcher
https://github.com/BurntSushi/ripgrep

Shell scripting 2020-02-08

History: Finding shell commands

• Problem: you want to find specific commands you typed at some point.

• up arrow: gives you back your last command, slowly goes through your shell history

• history: lets you access your shell history programmatically; print your shell history to the
standard output

– we can pipe that output to grep and search for patterns

* e.g. history | grep findwill print commands with the substring “find”.

• if you start a commandwith a leading space it won’t be added to you shell history. useful when
you are typing commands with passwords or other bits of sensitive information.

• If you make the mistake of not adding the leading space you can always manually remove the
entry by editing your .bash_history or .zhistory.

• Ctrl+R: backwards search through your history.

– After pressing Ctrl+R you can type a substring you want to match for commands in your
history.

– As you keep pressing it you will cycle through the matches in your history.
– This can also be enabled with the UP/DOWN arrows in zsh.
– Anice addition: fzf bindings. fzf is a general purpose fuzzy finder that canusedwithmany
commands. used to fuzzilymatch through your history andpresent results in a convenient
and visually pleasing manner.

History-based autosuggestions

• First introduced in fish shell, this feature dynamically autocompletes your current shell com-
mand with the most recent command that you typed that shares a common prefix with it

• can be enabled in zsh and it is a great quality of life trick for your shell

Directory Navigation

• Problem: how to quickly navigate directories
• writing shell aliases
• creating symlinks with ln -s
• fasd: Find frequent and/or recent files and directories

8

https://github.com/zsh-users/zsh-history-substring-search
https://github.com/junegunn/fzf/wiki/Configuring-shell-key-bindings#ctrl-r
https://fishshell.com/
https://github.com/zsh-users/zsh-autosuggestions
http://man7.org/linux/man-pages/man1/ln.1.html
https://github.com/clvv/fasd

Shell scripting 2020-02-08

– Fasd ranks files and directories by frecency (both frequency and recency)
– most straightforwarduse isautojumpwhichadds az command that you canuse toquickly
cd using a substring of a frecent directory. E.g. if you often go to /home/user/files/
cool_project you can simply z cool to jump there.

More complex tools to get an overview of a directory structure * tree * broot * full fledged file man-
agers: * nnn * ranger

Alternative Shells

zsh: Z shell is an extended version of the Bourne Shell (sh), based on bash zsh cheatsheet Pros: ref
* automatic cd: just type name of directory * recursive path expansion: e.g. /u/lo/b expands to /
user/local/bin * spelling correction and approx. completion * plugin and theme

Installation guide Install OhMy Zsh To get fontsworking correctly using Ubuntu viaWSL, had to install
powerline fonts on Windows by cloning the repo and installing (ref):

1 >git clone https://github.com/powerline/fonts.git
2 >cd fonts
3 >.\install.ps1

Manually select a powerline font on the Ubuntu window for special characters to work. Change direc-
tory colours (select from here)

1 # using dircolors.ansi-dark
2 curl https://raw.githubusercontent.com/seebi/dircolors-solarized/master

/dircolors.ansi-dark --output ~/.dircolors
3 ## set colors for LS_COLORS
4 eval `dircolors ~/.dircolors`

NB configuration menu accessed by

1 $ autoload -Uz zsh-newuser-install
2 $ zsh-newuser-install -f

Exercises

1. Read man ls and write an ls command that lists files in the following manner

• Includes all files, including hidden files
• Sizes are listed in human readable format (e.g. 454M instead of 454279954)
• Files are ordered by recency
• Output is colorized

9

https://developer.mozilla.org/en/The_Places_frecency_algorithm
https://linux.die.net/man/1/tree
https://github.com/Canop/broot
https://github.com/jarun/nnn
https://github.com/ranger/ranger
https://github.com/ohmyzsh/ohmyzsh/wiki/Cheatsheet
https://www.howtogeek.com/362409/what-is-zsh-and-why-should-you-use-it-instead-of-bash/
https://github.com/ohmyzsh/ohmyzsh/wiki/Installing-ZSH
https://github.com/ohmyzsh/ohmyzsh
https://github.com/powerline/fonts
https://blog.joaograssi.com/windows-subsystem-for-linux-with-oh-my-zsh-conemu/
https://github.com/seebi/dircolors-solarized
http://man7.org/linux/man-pages/man1/ls.1.html

Shell scripting 2020-02-08

A sample output would look like this

1 -rw-r--r-- 1 user group 1.1M Jan 14 09:53 baz
2 drwxr-xr-x 5 user group 160 Jan 14 09:53 .
3 -rw-r--r-- 1 user group 514 Jan 14 06:42 bar
4 -rw-r--r-- 1 user group 106M Jan 13 12:12 foo
5 drwx------+ 47 user group 1.5K Jan 12 18:08 ..

{% comment %} ls -lath –color=auto {% endcomment %}

2. Write bash functions marco and polo that do the following. Whenever you execute marco the
current working directory should be saved in some manner, then when you execute polo, no
matter what directory you are in, polo should cd you back to the directory where you executed
marco. For ease of debugging you canwrite the code in a file marco.sh and (re)load the defini-
tions to your shell by executing source marco.sh.

{% comment %} marco() { export MARCO=$(pwd) }

polo() { cd “$MARCO” } {% endcomment %}

1. Say youhave a command that fails rarely. In order to debug it youneed to capture its output but
it can be time consuming to get a failure run. Write a bash script that runs the following script
until it fails and captures its standard output and error streams to files and prints everything at
the end. Bonus points if you can also report howmany runs it took for the script to fail.

1 #!/usr/bin/env bash
2
3 n=$((RANDOM % 100))
4
5 if [[n -eq 42]]; then
6 echo "Something went wrong"
7 >&2 echo "The error was using magic numbers"
8 exit 1
9 fi
10
11 echo "Everything went according to plan"

{% comment %} #!/usr/bin/env bash

count=0 until [[“$?” -ne 0]]; do count=$((count+1)) ./random.sh &> out.txt done

echo “found error after $count runs” cat out.txt {% endcomment %}

1. As we covered in lecture find’s -exec can be very powerful for performing operations over
the files we are searching for. However, what if we want to do something with all the files, like
creating a zip file? As you have seen so far commands will take input from both arguments and
STDIN.Whenpiping commands, we are connecting STDOUT to STDIN, but some commands like

10

Shell scripting 2020-02-08

tar take inputs from arguments. To bridge this disconnect there’s the xargs command which
will execute a command using STDIN as arguments. For example ls | xargs rm will delete
the files in the current directory.

Your task is to write a command that recursively finds all HTML files in the folder and makes a
zipwith them. Note that your command shouldwork even if the files have spaces (hint: check -
d flag for xargs) bash find . -type f -name "*.html"| xargs -d '\n'tar -cvzf
archive.tar.gz

2. (Advanced) Write a command or script to recursively find the most recently modified file in a
directory. More generally, can you list all files by recency?

Solutions

1. $ ls -laht --color
2.
1 marco() {
2 export MARCO=$(pwd)
3 }
4
5 polo() {
6 cd "$MARCO"
7 }

1 #!/usr/bin/env bash
2
3 n=$((RANDOM % 100))
4
5 if [[n -eq 42]]; then
6 echo "Something went wrong"
7 >&2 echo "The error was using magic numbers"
8 exit 1
9 fi
10
11 echo "Everything went according to plan"

3.4. First create some html files bash $ mkdir foo bar $ touch {foo,bar}/{a..g}.html
$ touch {a..g}.html $ find . -path "*.html"./a.html ./b.html ./bar/a.
html ./bar/b.html ./bar/c.html ./bar/d.html ./bar/e.html ./bar/f.html
./bar/g.html ./c.html ./d.html ./e.html ./f.html ./foo/a.html ./foo/b.
html ./foo/c.html ./foo/d.html ./foo/e.html ./foo/f.html ./foo/g.html
./g.html $ find . -name "*.html"| xargs -d '\n'tar -cvzf test.tar.gz

11

http://man7.org/linux/man-pages/man1/xargs.1.html

	Table of Contents
	Assignment and string delimiters
	Functions
	Special Variables
	Streams
	Stream redirection
	Return codes and conditional execution
	Command and process substitution
	Shell globbing
	Shebang
	Shell functions and scripts: the differences
	Shell Tools
	Finding how to use commands
	Finding files
	find
	fd
	locate

	Finding code
	History: Finding shell commands
	History-based autosuggestions

	Directory Navigation
	Alternative Shells
	Exercises
	Solutions

