Gradient Descent

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla f(\boldsymbol{\theta})$$

- η : learning rate/step size
- $\nabla = \left[\frac{\partial}{\partial \theta_i}\right]$: gradient; vector of partial derivatives

Distance

Manhattan - L1

Euclidean - L2

Cosine

Jaccard

Hamming

K-Nearest Neighbours

Epsilon Smoothing

Laplace Smoothing

Naive Bayes

Decision Tree

Entropy

• entropy for discrete random variable x without possible outcomes 1, ..., n:

$$H(x) = -\sum_{i=1}^n P(i) \log_2 P(i)$$

Mean Information

- Mean information: \boldsymbol{m} attribute values of \boldsymbol{x}
 - $H(x_i)$: entropy of class distribution for instances at node x_i

- $P(x_i)$: proportion of instances at sub-node x_i

$$\text{mean-info}(x_1,...,x_m) = \sum_{i=1}^m P(x_i) H(x_i)$$

Information gain

$$IG(R_A|R) = H(R) - \text{mean-info}(R_A)$$

- when using IG as split criterion, choose the attribute with the highest IG
- · biased towards attributes with many values

Split Information

• Split information: entropy of a given split: evenness of distribution of instances to attribute values

$$SI(R_A|R) = H(R_A) = -\sum_{i=1}^m P(x_i) \log_2 P(x_i)$$

Gain Ratio

$$GR(R_A|R) = \frac{IG(R_A|R)}{SI(R_A|R)}$$

- when using GR as split criterion, choose the attribute with the highest GR
- · discourages selection of attributes with many uniformly distributed values

ID3

Recursive function:

```
1 function id3(root):
   if all instances of same class, or other stopping criterion met:
2
3
        stop
4 else:
5
        select a new attribute to use to partition node instances (IG or
           GR)
        create a branch for each distinct attribute value
6
7
        partition root instances by value
        for each leaf node leaf_i:
8
            id3(leaf_i)
9
```

Unsupervised Learning

k-means

```
    initialise k seeds as cluster centroids
    repeat
    compute distance of all points to cluster centroids
    assign points to the closest cluster
    recompute cluster centroid
    until clusters don't change
```

Agglomerative clustering

Evaluation

Cluster - entropy

Cluster - purity

Evaluation

Perceptron

Forward pass

$$\hat{y} = f(\theta^T x)$$

- f may be step, in which case:

$$f(z) = \begin{cases} 1: z > 0\\ -1: otherwise \end{cases}$$

Perceptron update rule

$$\theta \leftarrow \theta + \eta (y^i - \hat{y}^i) x$$

Neural Network update

Sigmoid

$$\sigma(z) = \frac{1}{1+e^{-z}}$$

$$\sigma'(z) = \sigma(z)(1-\sigma(z))$$

Backpropagation Algorithm

- design Neural Net
- initialise θ
- one epoch: repeat for each training instance
- forward pass: work from left to right
 - activation for node *i* of layer *l*:

$$a_{i}^{l}=\sigma({\theta_{i}^{l}}^{T}x)$$

- for output node: \hat{y} = activation of last node
- compute error $E=\frac{1}{2}(y-\hat{y})^2$
- backpropagate:
 - compute δ_i^l for node *i* of layer *l*:

$$\delta^l_i = \sigma'(z^l_i)(y-\hat{y}):$$
 final layer

- use $\hat{y} = \textit{output}$ activation - i.e. look at gradient, and the deviation in activation

$$\delta_i^l = \sum_j \sigma'(z_i^l) \theta_{ij}^{l+1} \delta_j^{l+1}:$$
 hidden layer

- find weighted sum of all δs from the nodes of the next layer, weighted by θ between those nodes
 - compute $\Delta \theta$ for all nodes, in any order. For node *i* in layer *l*:

$$\Delta \theta_i^l = -\eta \nabla E(\theta) = \eta \delta_i^l a_i^{l-1}$$

- i.e. multiply learning rate, η , the node's $\delta,$ and the node's input a_i^{l-1}
- update all $\theta {\rm s}$ at once. For node i in layer l

$$\theta_i^l \leftarrow \theta_i^l + \Delta \theta_i^l$$

• continue until stop criteria reached