Manipulation approaches for Ensemble Learning

- instance
- feature
- algorithm
- class label

Ensemble Methods

- stacking
- bagging
 - random forest
- boosting
 - AdaBoost

Stacking

• idea: smooths errors over range of algorithms with different biases

Simple voting

- generate multiple training datasets through different feature subsets
- train base classifier over each dataset
- presupposes classifiers have equal performance

Meta classification

- train a classifier over output of base classifiers
- train using nested cross validation to reduce bias
- e.g. Level 0: given training dataset (X, y):
 - train NN
 - train NB
 - train DT
- (possibly) discard X, and add new attributes for each instance

- prediction of classifier above
- other data as available (NB scores)
- Level 1: train meta-classifier
 - usually logistic regression or neural network

Nested cross-validation

- need to prevent testing L_1 classifier on same data as L_0 classifiers trained on
- cross-validate base models on a subset of the folds
- cross-validate meta-classifier on all the folds
- Nested Cross Validation

Assessment

- mathematically simple
- computationally expensive
- can combine heterogeneous classifiers with varying performance
- generally produces \geq results than best base classifier
- widely used in applied research, less interest in theoretical circles
 - few guarantees, but empirically good performance

Bagging

- bootstrap aggregation
- idea: more data means better performance (lowering variance)
 - how can we get more data out of a fixed training dataset?
- method: construct novel dataset through random sampling and replacement
 - **bootstrap:** randomly sample original dataset N times with replacement
 - gives new dataset of same size. Probability any individual instance is absent is $\approx 37\%$ for large N
 - construct k random datasets for k bae classifiers
 - prediction via voting
- **Random sampling with replacement:** when instance selected from population at random is returned to population before next element is sampled

- each sample value is independent: what we get the second time has no dependence on what we got the first time
- cf. without replacement: you won't get repetition of any elements; two samples aren't independent

Assessment

- the same weak base classifier used throughout
- as bagging is aimed towards minimising variance through sampling, the algorithm should be unstable (high-variance)
- so use it with more complex models e.g. decision trees
- bagging **cannot** reduce bias
- simple method: sampling + voting
- can parallelise computation of individual base classifiers
- highly effective over noisy datasets: outliers may vanish
- performance generally significantly better than base classifiers, but occasionally substantially worse

Random Forest

Random tree

- feature manipulation
- decision tree, where
 - at each node, only some of possible attributes considered
 - e.g. fixed proportion of all unused attributes
 - attempts to control for unhelpful attributes in feature set
 - faster to build than deterministic decision tree, but has higher model variance

Random forest

- bagging method
- ensemble of random trees
- each tree is built using a different bagged training dataset
- combined classification via voting
- · idea: minimise overall model variance, without introducing combined model bias
- instance manipulation

Ensemble Methods

• hyperparameters:

- number of trees B: can be tuned, e.g. 100
- feature sub-sample size often $(\log |F| + 1)$
- loss of interpretability
 - logic behind individual instances can be followed for individual trees
 - logic of overall model is unclear

Assessment

- generally strong performer
- parallelisable
- surprisingly efficient
- robust to overfitting
- loss of interpretability

Boosting

- idea: tune base classifiers to focus on difficult instances (i.e. those hard to classify)
- approach: iteratively change the distribution and weights of training instances to reflect performance of classifier at previous iteration
 - start with each training instance having uniform probably of inclusion in the sample
 - over *T* iterations, train a classifier. **Update the weight** of each instance according to whether it was correctly classified
 - combine base classifiers via weighted voting

AdaBoost

- Adaptive Boosting
- sequential ensembling algorithm
- base classifier: C₀
- training instances: $\{(x_j,y_j)|j=1,...,N\}$
- initial instance weights: $w_i^0 = \frac{1}{N}$
- in iteration *i*:
 - construct classifier C_i

– compute error rate ϵ_i

$$\epsilon_i = \sum_{j=1}^N w^i_j \delta(C_i(x_j) \neq y_j)$$

- use ϵ_i to compute **classifier weight** α_i importance of classifier C_i
 - * low error means high classifier weight
- use α_i to update **instance weights**
- add weighted C_i to ensemble

Output: weighted set of base classifiers: $\{(\alpha_1, C_1), ..., (\alpha_T, C_T)\}$

$\operatorname{Computing} \alpha$

- importance of $C_i,$ the weight associated with $C_i\,{}^{\prime}\!{\rm s}$ vote

$$\alpha_i = \frac{1}{2} \ln \frac{1 - \epsilon_i}{\epsilon_i}$$

• this is derived via minimisation of error

Figure 1: alpha

- when error is low, α is high
- random classifier has $\epsilon=0.5$, so if error is greater than this (lpha<0), re-initialise

$\mathbf{Updating}\,w$

- weights for instance j at iteration i + 1
- if $C_i(\boldsymbol{x}_i) = y_i$, correct prediction, so decrease weight for next iteration:

$$w_j^{i+1} = \frac{w_j^i}{Z_i} \exp{-\alpha_j}$$

- if $C_i(x_i) \neq y_i$, incorrect prediction, so increase weight for next iteration:

$$w_j^{i+1} = \frac{w_j^i}{Z_i} \exp \alpha_i$$

+ $\, Z_i$ is a normalisation constant such that $\sum w_j = 1 \,$

Figure 2: weight update

- iterate for i = 1, ..., T
- reinitialise instance weights whenever $\epsilon_i < 0.5$

Classification

• classification by weighted vote

$$C^*(x) = \operatorname*{arg\,max}_y \sum_{j=1}^T \alpha_j \delta(C_j(x) = y)$$

Assessment

- mathematically complicated, computationally cheap
- iterative sampling + weighted voting
- more expensive than bagging
- as long as each base classifier is better than random, convergence to a stronger model is guaranteed
- guaranteed performance error bounds over training data
- · decision stumps/decision trees typically used as base classifiers. Extremely popular
- has a tendency to overfit
- gradient boosting is another more recent boosting approach

Bagging vs Boosting

Bagging

- parallel sampling
- simple voting
- homogeneous base classifiers
- minimises variance
- not prone to overfitting

Boosting

- iterative sampling
- weighted voting
- homogeneous base classifiers
- minimises instance bias
- prone to overfitting