OpenGL Graphics Pipeline

Figure 1: Graphics Pipeline

- input: array of vertices with vertex attributes, e.g. position and colour
- vertex shader: operates on a vertex, transforming between 3D coordinate systems
- also allows basic processing of vertex attributes
- primitive assembly: receives all vertices from the vertex shader to form a primitive, assembling them into the required shape (e.g. triangle)
- geometry shader: receives collection of vertices forming a primitive, and generates new shapes by emitting new vertices to form new/other primitives
- rasterisation: maps the primitives to corresponding pixels on the screen, producing fragments
- clipping is also performed, discarding fragments outside the view
- fragment shader: calculates final colour of a pixel
- typically contains data about 3D scene allowing calculation of lights, shadows, ...
- alpha test and blending: checks depth of the fragment, and whether the fragment is in front/behind other objects

Shaders

Ins and Outs

- in/out are input/output variables respectively
- vertex shader should receive input in the form of the vertex data (otherwise it can't do much)
- fragment shader requires vec4 colour output variable

Vertex Shader

```
#version 330 core
// position variable has attribute position 0
layout (location = 0) in vec3 aPos;
```

```
// specify colour output to fragment shader
out vec4 vertexColor;
void main() {
    gl_Position = vec4(aPos, 1.0);
    vertexColor = vec4(0.5, 0.0, 0.0, 1.0);
}
```


Fragment Shader

```
#version 330 core
out vec4 FragColor;
// input variable from the vertex shader
in vec4 vertexColor;
void main() {
    FragColor = vertexColor;
}
```


Uniforms

- uniforms are
- global
- maintain value until they are reset/updated

Sources

Learn OpenGL

Transformations

Homogeneous coordinates

- in order to do matrix translations, an additional coordinate is needed
- the homogeneous coordinate w is added as a component of the vector
- the 3D vector is derived by dividing the x, y, z components by w, but usually $w=1$, so no conversion is required
- if w is 0 , the vector is a direction vector as it cannot be translated

Scaling

Scaling by $\left(S_{1}, S_{2}, S_{3}\right)$ on a vector (x, y, z) can be done with the following matrix:

$$
\left[\begin{array}{cccc}
S_{1} & 0 & 0 & 0 \\
0 & S_{2} & 0 & 0 \\
0 & 0 & S_{3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
S_{1} x \\
S_{2} y \\
S_{3} z \\
1
\end{array}\right]
$$

Translation

- translation of a vector by $\left(T_{x}, T_{y}, T_{z}\right)$ can be achieved with the following matrix:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & T_{x} \\
0 & 1 & 0 & T_{y} \\
0 & 0 & 1 & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x+T_{x} \\
y+T_{y} \\
z+T_{z} \\
1
\end{array}\right]
$$

Rotations

- specified with an angle and a rotation axis
- rotation about the x-axis:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
\cos \theta y-\sin \theta z \\
\sin \theta y+\cos \theta z \\
1
\end{array}\right]
$$

- there are similar matrices around the other axes
- by combining these matrices you can achieve arbitrary rotations
- gimbal lock is possible using this approach, can be avoided by quaternions

