
Graphics 2020-12-03

OpenGL Graphics Pipeline

Figure 1: Graphics Pipeline

• input: array of vertices with vertex attributes, e.g. position and colour
• vertex shader: operates on a vertex, transforming between 3D coordinate systems

– also allows basic processing of vertex attributes

• primitiveassembly: receivesall vertices fromthevertex shader to formaprimitive, assembling
them into the required shape (e.g. triangle)

• geometry shader: receives collection of vertices forming a primitive, and generates new
shapes by emitting new vertices to form new/other primitives

• rasterisation: maps the primitives to corresponding pixels on the screen, producing fragments

– clipping is also performed, discarding fragments outside the view

• fragment shader: calculates final colour of a pixel

– typically contains data about 3D scene allowing calculation of lights, shadows,…

• alpha test and blending: checks depth of the fragment, and whether the fragment is in fron-
t/behind other objects

Shaders

Ins and Outs

• in/out are input/output variables respectively
• vertex shader should receive input in the form of the vertex data (otherwise it can’t do much)
• fragment shader requires vec4 colour output variable

Vertex Shader

1 #version 330 core
2 // position variable has attribute position 0
3 layout (location = 0) in vec3 aPos;

1



Graphics 2020-12-03

4
5 // specify colour output to fragment shader
6 out vec4 vertexColor;
7
8 void main() {
9 gl_Position = vec4(aPos, 1.0);
10 vertexColor = vec4(0.5, 0.0, 0.0, 1.0);
11 }

Fragment Shader

1 #version 330 core
2 out vec4 FragColor;
3
4 // input variable from the vertex shader
5 in vec4 vertexColor;
6
7 void main() {
8 FragColor = vertexColor;
9 }

Uniforms

• uniforms are

– global
– maintain value until they are reset/updated

Sources

Learn OpenGL

Transformations

Homogeneous coordinates

• in order to domatrix translations, an additional coordinate is needed
• the homogeneous coordinate 𝑤 is added as a component of the vector
• the 3D vector is derived by dividing the 𝑥, 𝑦, 𝑧 components by 𝑤, but usually 𝑤 = 1, so no
conversion is required

• if 𝑤 is 0, the vector is a direction vector as it cannot be translated

2

https://learnopengl.com


Graphics 2020-12-03

Scaling

Scaling by (𝑆1, 𝑆2, 𝑆3) on a vector (𝑥, 𝑦, 𝑧) can be done with the following matrix:

⎡
⎢
⎢
⎢
⎣

𝑆1 0 0 0
0 𝑆2 0 0
0 0 𝑆3 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

⋅
⎡
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑆1𝑥
𝑆2𝑦
𝑆3𝑧
1

⎤
⎥
⎥
⎥
⎦

Translation

• translation of a vector by (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) can be achieved with the following matrix:

⎡
⎢
⎢
⎢
⎣

1 0 0 𝑇𝑥
0 1 0 𝑇𝑦
0 0 1 𝑇𝑧
0 0 0 1

⎤
⎥
⎥
⎥
⎦

⋅
⎡
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑥 + 𝑇𝑥
𝑦 + 𝑇𝑦
𝑧 + 𝑇𝑧

1

⎤
⎥
⎥
⎥
⎦

Rotations

• specified with an angle and a rotation axis
• rotation about the 𝑥-axis:

⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 cos 𝜃 − sin 𝜃 0
0 sin 𝜃0 cos 𝜃 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

⋅
⎡
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑥
cos 𝜃𝑦 − sin 𝜃𝑧
sin 𝜃𝑦 + cos 𝜃𝑧

1

⎤
⎥
⎥
⎥
⎦

• there are similar matrices around the other axes
• by combining these matrices you can achieve arbitrary rotations

– gimbal lock is possible using this approach, can be avoided by quaternions

3


	OpenGL Graphics Pipeline
	Shaders
	Ins and Outs
	Uniforms

	Sources
	Transformations
	Homogeneous coordinates
	Scaling
	Translation
	Rotations


