
Indirect Communication 2020-11-11

Indirect Communication

• indirect communication: communication between entities in a distributed system via an in-
termediary, with no direct coupling between the sender and the receiver/s

• Remote invocation is based on direct coupling between senders and receivers, making systems
rigid and difficult to chane

• indirect communication usedwhen change is anticipated: e.g.mobile environmentswith users
coming and going

• disadvantages:

– performance overhead due to extra indirection
– more difficult to manage due to lack of space/time coupling

Space and Time Uncoupling

• space uncoupling: sender doesn’t know the identity of the receiver/s

– participants can be replaced, updated, replicated, migrated

• time uncoupling: sender and receiver don’t need to exist at the same time

– useful in volatile environments where participants come and go
– implies persistence in communication channel: messages must be stored
– NB different to asynchronous communication: asynchronous comms don’t imply that the
receiver has an independent lifetime

Time-coupled Time-uncoupled

Space coupling message passing, remote invocation

Space uncoupling IP multicast Most indirect communication paradigms

Paradigms

• group communication
• publish subscribe
• message queues
• sharedmemory

1



Indirect Communication 2020-11-11

Figure 1: Summary

Group Communication

• group communication: communication via group abstraction

– space uncoupled service: sender doesn’t know receivers identities
– single message sent by sender to a group gets delivered to all groupmembers
– single multicast send is defining feature c.f. multiple unicast sends
– management of groupmembership
– more effective useof bandwidthwith singlemulticast tomultiple receivers (insteadofmul-
tiple, independent send operations)

– detection of failures
– reliability and ordering guarantees: if a process fails half-way through multiple indepen-
dent send operations to different recipients, system has no way of guaranteeing whether
all recipients received the message or not

• provides more than primitive IP multicast, but may be implemented over IP multicast or an
overlay network

• important element when building reliable distributed systems

2



Indirect Communication 2020-11-11

Applications

• financial: reliable dissemination of financial information (e.g. stock tickers) to large number of
clients

• institutions need accurate, up-to-date access to large number of information sources
• multiuser game
• fault-tolerance: consistent update of replicated data
• systemmonitoring/management, load balancing

Primitives

• group
• groupmembership
• join
• leave
• multicast
• broadcast: communication to all processes in the system

Group Model

Figure 2: Group Membership

3



Indirect Communication 2020-11-11

Group Distinctions

These distinctions signficantly impact the underlying multicast algorithms. e.g. some algorithms as-
sume groups are closed

• process groups: groups where communicating entities are processes

– most commonly used, e.g. JGroups

• object groups: higher level approach than process groups

– collection of objects that process the same set of invocations concurrently, each returning
responses

• closed: only members of the group canmulticast to it
• open: processes outside the groupmay send to it
• overlapping: entities may bemembers of multiple groups

Figure 3: Closed vs Open Groups

Implementation Issues

Reliability

• reliable multicast:

– integrity: deliver message correctly at most once
– validity: message sent is eventually delivered
– agreement: if the message is delivered to one process, it is delivered to all processes in
the group

4



Indirect Communication 2020-11-11

Ordering

• ordering is not guaranteed by underlying interprocess communication primitives
• Group services offer orderedmulticast, which may possess 1+ of the following properties:
• FIFO ordering: preserve ordering from sender’s perspective

– if a process sends one message before another, it will be delivered in this order at all pro-
cesses in the group

• Causal ordering: if a message happens before another message, this causal relationship will
be preserved in delivery at all processes

• Total ordering: if a message is delivered before another message at one process, the same
order will be preserved at all processes

FIFOordering:

CausalOrdering:

Source

5

https://www.cl.cam.ac.uk/teaching/1516/ConcDisSys/2016-DistributedSystems-1B-L5.pdf


Indirect Communication 2020-11-11

Comparisonofall 3:

Source

Groupmembershipmanagement

• groupmembers leave and join
• failed members
• notify members of groupmembership changes
• changes to the group address

Publish-Subscribe

• publish-subscribe systems: publisher disseminates events to multiple recipients via an inter-
mediary

– aka distributed event-based systems
– most widely used paradigm
– publishers publish structure events to an event service
– subscribersexpress interest inevents through subscriptions, whicharearbitrarypatterns
over the structured events

– one-to-many: given event eventually delivered to many recipients

6

http://courses.engr.illinois.edu/cs425/fa2009/L5tmp.pdf


Indirect Communication 2020-11-11

Applications

• financial information systems
• live feeds of real-time data
• cooperative working: number of participants notified of events of interest
• ubiquitous computing: management of events from ubiquitous infrastructure (e.g. location
events)

• monitoring: e.g. network monitoring
• Google’s ad clicks

Dealing Room

• financial information system
• task: allows dealers to see latest market prices of stocks
• market price for a single stock represented by an object
• information providers: processes that collect information arriving in dealing room from a num-
ber of external sources

– each update is an event
– provider publishes events to pub-sub system for delivery to all dealers subscribed to the
corresponding stock

• dealer process subscribes to a named stock

– it receives notifications and updates the objects representing the stocks
– update is then displayed to user

7



Indirect Communication 2020-11-11

Figure 4: Dealing Room

Events and Notifications

• RMI, RPC support synchronous communication model: client invoking call waits for results to
be returned

• events and notifications are associated with asynchronous communicationmodel
• event sources can generate different event types

– attributes contain event information
– types and attributes are used by subscribers when subscribing to events
– notifications occur when event types and attributes match that of a subscription

Characteristics

• heterogeneity: events allow components that weren’t designed for interoperation to work to-
gether

– publisher needs to publish required events

8



Indirect Communication 2020-11-11

– subscribers need to subscribe to events of interest
– interface needs to be provided for receiving/dealing with notifications

• asynchronous: communication is asynchronous and event-driven

Model

Figure 5: Publish-subscribe

• event e
• filter f
• publish(e)
• subscribe(f)
• unsubscribe(f)
• notify(e)
• advertise(f): publishers can declare the nature of future events in terms of filters
• unadvertise(f)

Types

• channel-based: publishers publish events to named channels, and subscribers subscribe to
one of these channels to receive all events on that channel

9



Indirect Communication 2020-11-11

– primitive: only scheme that defines a physical channel
– more advanced approaches use filtering over event contents

• topic-based/subject-based: notification expressed in terms of number of fields, one field de-
noting the topic

– subscriptions defined in terms of topics
– channels are implicitly defined, while topics are explicitly declared
– permits hierarchical organisation of topics

• content-based: generalisation of topic based approach

– express subscriptions over a particular values for a range of fields in an event notification
– notifications sent are those matching the attributes specified
– most flexible

• type-based: object-based, with objects having a specific type

– subscriptions defined in terms of types of events
– notifications sent are those matching types or subtypes of the given filter
– similar expressiveness to content-based

Centralised

Architecture

Examples

Message Queue

• message queue: messages are placed on a queue, receivers extract messages from the queue

Programming Model

Shared Memory

• sharedmemory: abstraction of global sharedmemory

– e.g. distributed sharedmemory, tuple spaces

10



Indirect Communication 2020-11-11

Tuple Spaces

York Linda Kernel

11


	Indirect Communication
	Space and Time Uncoupling
	Paradigms
	Group Communication
	Applications
	Primitives
	Group Model
	Group Distinctions
	Implementation Issues

	Publish-Subscribe
	Applications
	Dealing Room
	Events and Notifications
	Characteristics
	Model
	Types
	Centralised
	Architecture
	Examples

	Message Queue
	Programming Model

	Shared Memory
	Tuple Spaces
	York Linda Kernel



