
Remote Invocation 2020-11-09

Remote Invocation

• request-reply communication: most primitive; minor improvement over underlying IPC primi-
tives

– 2-way exchange of messages as in client-server computing

• Remote Procedure Call (RPC): extension of conventional procedural programmingmodel

– allow client programs to transparently call procedures in server programs running in sep-
arate processes, and in separate machines from the client

• Remote Method Invocation (RMI): extension of conventional object oriented programming
model

– allows objects in different processes to communicate
– extension of local method invocation: allows object in one process to invoke methods of
an object living in another process

Figure 1:Middleware Layers

Request-Reply Protocol

• most common exchange protocol for remote invocation

1



Remote Invocation 2020-11-09

Figure 2: Request-Reply communication

Operations

• doOperation(): send request to remote object, and returns the reply received
• getRequest(): acquire client request at server port
• sendReply(): sends reply message from server to client

Design issues

• timeouts: what to do when a request times out? howmany retries?
• duplicate messages: how to discard?

– e.g. recognise successive messages with the same request ID and filter them

• lost replies: dependent on idempotency of server operations
• history: do servers need to send replies without re-execution? then history needs to be main-
tained

Design decisions

• retry policy

– howmany times to retry?

• duplicate filter mechanism
• retransmission policy

2



Remote Invocation 2020-11-09

Exchange protocols

Different flavours of exchange protocols:

• request (R): no value to be returned from remote operation

– client needs no confirmation operation has been executed
– e.g. sensor producing large amounts of data: may be acceptable for some loss

• request-reply (RR): useful for most client-server exchanges. Reply regarded as acknowledge-
ment of request

– subsequent request can be considered acknowledgement of the previous reply

• request-reply-acknowledge (RRA): acknowledgement of reply contains request id, allowing
server to discard entry from history

TCP vs UDP

• limited length of datagramsmay affect transparency of RMI/RPC systems which should be able
to accept data of any size

• TCP can be chosen to avoid multipacket protocols, avoiding this issue
• TCP additional overheads: acknowledgements, connection establishmen
• TCP also ensures reliable delivery

– no need to filter duplicates or use histories

• TCP therefore simplifies implementation of request-reply protocol
• if application doesn’t require all of TCP facilities, more efficient, tailored protocol can be imple-
mented over UDP

Invocation semantics

• maybe: RPCmay be executed once or not at all

– unless call receives result, it is unknown whether RPC was called

• at-least-once: either

– remote procedure was executed at least once and caller received a response, or
– caller received exception to indicate remote procedure was not executed at all

• at-most-once: RPC was either

3



Remote Invocation 2020-11-09

– executed exactly once, in which case caller received response, or
– not executed at all, and caller receives an exception

• level of transparency provided depends on design choices and objectives
• Java RMI supports at-most-once invocation semantics
• Sun RPC supports at-least-once

Fault tolerance

Figure 3: Call Semantics

Transparency

• location and access transparency are usually goals for remote invocation
• sometimes complete transparency undesirable:

– remote invocations are more prone to failure due to network/remote machines
– latency of remote invocations significantly higher than local ones

• many implementations provide access transparency, but not complete location transparency,
allowing programmer to optimise based on location

HTTP: RR protocol

• see comp sys notes

4



Remote Invocation 2020-11-09

RPC

• RPCs enable clients to execute procedures in server processes based on a defined service inter-
face

• generally implemented over request-reply protocol

RPC Roles

Figure 4: RPC roles

• communication module: implements design w.r.t. retransmission of requests, duplicate han-
dling, result retransmission

• client stub procedure: behaves like a local procedure to client

– marshals procedure identifiers and arguments, and passes it to communication module
– unmarshals the results in the reply

• dispatcher: selects server stub based on procedure identifier, forwarding request to the server
stub

• server stub procedure: unmarshalls arguments in request message, and forwards to service
procedure

– marshals arguments in result message and returns to client

• service procedure: actual procedure to call, implements procedures in the service interface

• client/server stub procedures, as well as dispatcher, can be generated automatically by an in-
terface compiler

5


	Remote Invocation
	Request-Reply Protocol
	Operations
	Design issues
	Design decisions
	Exchange protocols
	TCP vs UDP
	Invocation semantics
	Fault tolerance
	Transparency
	HTTP: RR protocol

	RPC
	RPC Roles



