Interprocess Communication 2020-11-08

Interprocess Communication (IPC)

« Middleware

- low layer: supports basic IPC
- next layer: high level communication paradigm RMI, RPC

Overview
Java APIs for Internet Protocols

- UDP

- message passing abstraction

- processes transmit a single datagram to a receiving process
- best effort

- no guarantees

- abstraction of 2-way stream

- streams have no message boundaries

- basis of producer/consumer communication
- transparent recovery

- higher overhead than UDP

- reliable

- if connection fails, exception is produced

Data Representation

+ how objects/data are translated into suitable form for sending as messages over network

- receiver needs to be able to decode what it receives

Higher level Protocols

+ request-reply protocols: client-server
« group multicast protocol: group communication

Interprocess Communication 2020-11-08

API for IP

processes use two message communication functions: send, receive
+ queue associated with each message destination

- receive side: OS is producer, process is consumer
« synchronous communication: both send and rece-ive are blocking

- when a send is issued, sending process is blocked until receive isissued
- when a receiveisissued, process blocks until a message arrives

+ asynchronous communication: send is non-blocking

- sending process returns as soon as the message is copied to a local buffer
- transmission of the message proceeds in parallel
- receive usually blocking, but can be non-blocking

« non-blocking receive: provides buffer to be filled in the background

- needs an interrupt/polling to be notified when the buffer is filled
- may be more efficient, requires more complex code to acquire incoming message

+ blocking receive: when you can have multiple threads in a single process (e.g. in Java), there
are no disadvantages, as one thread can issue the blocking call while other threads remain ac-
tive

Communication send receive

Synchronous blocking blocking

Asynchronous non-blocking blocking (usually)

« producer/consumer: linked blocking queue
« producer:

- offer(): look at queue - if full, returns False and doesn’t add to the queue
* otherwise adds data to the queue
* non-blocking

- put(): blocks untilit can be putin the queue

*x causes context switch
« consumer:

- take(): blocks until there’s something to take from the queue

Interprocess Communication 2020-11-08

* causes context switch

- peek(): non-blocking look at the first element without removing it
- poll(): returns null if empty, or Ist item from queue (removing it)

* non-blocking

+ NB: different to synchronous protocol: send a message and don’t do anything else until reply
received (doesn’t mean thread is blocked)
+ Node uses non-blocking calls and is single-threaded

Sockets

«+ socket: provides end point for communication between processes

- to receive messages, its socket must be bound to a local port on one of the Internet ad-
dresses of the host

- same socket can be used for both sending/receiving

- each socket is associated with single protocol: TCP/UDP

Java Internet Address

+ IntAddress: class encapsulating Internet address
+ call getByName to get an instance
« throws UnknownHostException

IntAddress aComputer = IntAddress.getByName("registermachine.com")

UDP datagram Communication

« server (receiver) binds its socket to a server port (known to the client)

client (sender) binds socket to any free port

receive method returns Internet address/port of the sender with the message

- this allows replies to be sent

message size

receiving process defines array of bytes to receive message

if too big message is truncated

practical limit 8kB
protocol allows packets up to 216 bytes

Interprocess Communication 2020-11-08

« barebones: low overhead
+ e.g. DNS, VoIP

Blocking

non-blocking sends

blocking receives

message delivered to message buffer of socket bound to the destination port
« invocations of receive on the socket collect the messages

messages discarded if no socket bound to the port

Timeouts

+ receive waits indefinitely until messages received
« can set timeouts on sockets to exit from infinite waits and check condition of sender
+ receive allows receiving from any port

- can be restricted to given IP addr/port
Possible failures
« data corruption: detected with checksum

« omission failures: buffers full, corruption, dropping
+ order: messages may be delivered out of order

Java API

 DataGramPacket

2 constructors for sending or for receiving
getData()

getPort()

getAddress()

+ DatagramSocket

- constructors: port number/no argument
- send()

- receive()

Interprocess Communication 2020-11-08

- setSoTimeout()

- connect()

+ see textbook for client/server e.g.

TCP Stream Communication

+ message sizes: no limit on data size

+ lost messages: acknowledgement scheme retransmits unacknowledged packets

« flow control: receive window; match speed between sender/receiver

+ congestion control: prevent congestion collapse of network

+ duplication/ordering: sequence numbers ensure duplicates are rejected and reordering oc-
curs as necessary

« destinations: connection established before communication

e.g. HTTP, FTP, Telnet, SMTP

Establishing TCP stream socket

« client:

- create socket with server address + port
- read/write data using stream associated with socket

s server:

- create listening socket bound to server port

- wait for clients to request connection: listening socket maintains a queue of incoming con-
nection requests

- server accepts a connection and creates new stream socket for the server to communicate
with the client

« pair of sockets (client/server) now connected by pair of streams, one in each direction. A socket
has an input stream and an output stream

Closing a socket

« data in output buffer sent to other end with indication stream is broken
+ no further communication possible

Interprocess Communication 2020-11-08

Issues

+ need pre-agreed format for data sent

+ blocking is possible at both ends

« if the process supports threads, best approach is to assign a thread to each connection so that
other clients are not blocked

Failure model

« checksum: detect/reject corrupt packets

« sequence number: detect/reject duplicates

« timeout + retransmission: lost packets

+ severe congestion: TCP streams declare connection broken

- breaks reliable communication

« communication broken: processes cannot distinguish between process failure and process
crash

« communicating processes cannot definitely say whether messages sent recently were received

« clean exit: very confident all data received correctly

Java API

* ServerSocket

- used to create a listening socket
- accept(): gets connect request from queue, returns Socket instance
- accept(): blocks until connection arrives

e Socket

used by pair of processes with a connection

client: uses constructor specifying DNS hostname:port, creating a socket bound to a local
port and connects to remote computer

getInputStream()
getOutputStream()

+ see textbook for TCP client/server

Interprocess Communication 2020-11-08

External Data Representation and Marshalling

« data structures need to be flattened to a sequence of bytes for transmission
« approaches to allow computers to interpret data

- use agreed external format
- transmit in senders format, with indication of format used

« external data representation: agreed standard for representing data structures and primitive
data

- CORBA common data representation
- Java serialization

- JSON

- XML

« marshalling: process of converting data to form suitable for transmission
« unmarshalling: disassembling data at receiver

- lots of validation required to ensure it conforms to expected format

CORBA’s Common Data Representation
Java Object serialization

XML Extensible Markup Language
JSON JavaScript Object Notation
Group Communication

IP Multicast

Overlay Networks

	Interprocess Communication (IPC)
	Overview
	Java APIs for Internet Protocols
	Data Representation
	Higher level Protocols

	API for IP
	Sockets
	Java Internet Address

	UDP datagram Communication
	Blocking
	Timeouts
	Possible failures
	Java API

	TCP Stream Communication
	Establishing TCP stream socket
	Closing a socket
	Issues
	Failure model
	Java API

	External Data Representation and Marshalling
	CORBA's Common Data Representation
	Java Object serialization
	XML Extensible Markup Language
	JSON JavaScript Object Notation

	Group Communication
	IP Multicast

	Overlay Networks

