
File Systems 2020-10-22

File Systems

• file system: provides

– convenient programming interface for disk storage
– access control
– file-locking (for file sharing)

• distributed file system: emulates non-distributed file system for client programs running on
multiple remote computers

• file service: allow programs to store and access remote files as they do local ones

– access files from any computer on intranet
– hosts providing such services canbeoptimised formultiple disk drives, and can supply file
services for other services (web, email)

– facilitates backup and archiving

• files: data + attributes
• directory: file containing list of other files

File System Layers

• Directory: relate file names to IDs
• File: relate file IDs to particular files
• Access control: check permissions for requested operations
• File access: read/write file data/attributes
• Block: access/allocate disk blocks
• Device: disk IO and buffering

UNIX file system operations

• open
• create
• close
• read
• write
• lseek: move read/write pointer to new position in the file
• link: add new name for file
• stat: get file attributes

1



File Systems 2020-10-22

Distributed File System Requirements

• e.g. Hadoop

Transparency

• Access: clients unaware of distribution of files

– uniform API for accessing local and remote files

• Location: clients see a uniform file name space

– names of files should be consistent regardless of where the file is physically stored

• Mobility: client programs/admin services don’t need to change when the files are physically
moved

• Performance: client programs should perform satisfactorily while the load varies in specified
range

• Scaling: service can be expanded by incremental growth

Concurrent file updates

• multiple clients’ updates should not interfere with each other
• should be able to manage policies

File replication

• multiple copies of files over several servers: better capacity for accessing the file, better fault
tolerance

Heterogeneity

• client and server should be able to operate on various hardware/OS

Fault tolerance

• transient communication problems shouldn’t result in file corruption
• invocation semantics: can be

– at-most-once

2



File Systems 2020-10-22

– at-least-once: simpler, but requires idempotent operations

• servers can be stateless such that there is no recovery required if a server goes down

Consistency

• multiple, concurrent access to file should see consistent representation of the file
• file metadata should be consistent on all clients

Security

• client requests should be authenticated
• data transfer should be encrypted

Efficiency

• comparable to conventional file systems

File Service Architecture

Figure 1: File system architecture

3



File Systems 2020-10-22

• abstract architecture based on NFS

Flat file service

• implements operations on contents of files
• UFID, Unique File Identifier given to flat file service to refer to the file to operate on

Directory service

• mapping between text file names and UFID
• creates directories, andmanages files within them
• client of flat file service, as directory files are stored there

Client module

• integrates directory service and flat file service to provide API expected by client applications
• client maintains a list of available file servers
• caching to improve performance

Flat file service interface

• UNIX interface requires the filesystem to maintain state (in the file pointer), which is manipu-
lated during read/write

• flat file service differs from UNIX interface for fault tolerance

– repeatable operations: except for Create, operations are idempotent, permitting at-
least-once RPC semantics

– stateless server: flat file service doesn’t need to maintain state. Can be restarted after
failure and resume operation without need for clients/server to restore any state

– files can be accessed immediately, c.f. UNIX where they first need to be opened

RPC Calls

• Read
• Write
• Create
• Delete

4



File Systems 2020-10-22

• GetAttributes
• SetAttributes

Flat file service access control

• authenticate RPC caller
• prevent illegal operations: e.g. legal UFIDs, enforce access privileges
• cannot store access control state: would break idempotency
• options:

– access check made whenever file name is converted to UFID, and results encoded as a
capability returned to client for submission to flat file server

– user ID canbe submitted for every request, with access checks performedby flat file server
for each file operation

Directory service interface

• translation from file name to UFID
• abstract directory service interface
• 0 TODO: <22-10-20, yourname> 0

File Group

• collection of files on a given server
• server may hold several file groups, and file groups can bemoved between servers
• files cannot change file group
• permits file service to be implemented across several servers
• files given UFIDs that ensure uniqueness across different servers

– e.g. concatenate server IP address with a date the file was created
– permits files in a group (i.e. files with common file group id) to be relocated to a different
server without conflicting with files already on the server

• mapping of UFIDs to servers can be cached at client module

Sun Network File System

• uses architecture described above

5



File Systems 2020-10-22

• many implementations of NFS following NFS protocols, using a set of RPCs that providemeans
for the client to perform operations on the remote file store

• NFS client makes requests to NFS server to access files

Figure 2: Sun NFS

Virtual File System

• VFS used by UNIX to provide transparent access to any number of different file systems, com-
bining remote and local file systems into a single filesystem

– maintains VFS structure for each filesystem in use
– maintains v-node for each open file, which records whether file is local/remote

* if local, v-node contains reference to i-node on UNIX file system

* if remote, v-node contains reference to files NFS file handle, a combo of filesystem
identifier, i-node number and any other identifying info

• NFS integrated in the same way

6



File Systems 2020-10-22

Client Integration

Server Interface

Mount Service

•

Server caching

• conventional UNIX systems: data read from disk/pages are retained in main memory buffer
cache, and evicted when buffer space is needed. Accesses to the cache do not require disk ac-
cess

– read-ahead: anticipates read accesses, fetches pages following those recently read
– delayed-write/write-back: optimises writes to disk by only writing pages when both
modified and evicted

* UNIX sync flushes modified pages every 30s

– works for conventional filesystem on single host, because there is only 1 cache and file
accesses cannot bypass it

• use of cache at server for client reads introduces no problems

• use of cache for writes requires special care: client needs to be confident writes are persistent
if server crashes

• options: cache policies used by the server

– Write-through: data written to cache and directly to disk

* increases disk I/O and latency for write

* operation completes when the data has been written to disk

* poor when server receives large number of write requests for the same data

* saves network bandwidth

– Commit: data is written to cache and is written to disk when a commit operation is re-
ceived for the data

* reply sent when data has been written to disk

* uses more network bandwidth

* may lead to uncommitted data being lost

* receives full benefit of cache

7



File Systems 2020-10-22

Client Caching

• NFS Client caches data reads, writes, attributes and directory operations to reduce network IO

• cachingat the client: problem for cache consistency, asdifferent cachesonmultiple clients, and
the server

• reading andwriting are both problems: a write on another client between two reads will lead
to the second read being incorrect

• NFS clients poll the server for updates

• 𝑇𝑐: time when a cache block was last validated by the client

• 𝑇𝑚: time when a block was last modified

• cache block is valid at time 𝑇 if

– 𝑇 − 𝑇𝑐 < 𝑡 where 𝑡 is a freshness interval, or
– 𝑇𝑚,𝑐𝑙𝑖𝑒𝑛𝑡 = 𝑇𝑚,𝑠𝑒𝑟𝑣𝑒𝑟

• small value for 𝑡 leads to close approximation of one-copy consistency, but costs greater net-
work IO

• in Sun Solaris clients 𝑡 is set adaptively (3-30s) depending on file update frequency

• validity check is made on each access to a cache block

– first half of check requires no network IO

NFS Summary

• ✓ access transparency: applications are usually unaware files are remote
• × location transparency: not enforced; no global namespace as different clients can mount
filesystems at different points

• × mobility transparency: if server changes, the client must be updated
• ∼ scalability: good, can be better. System can grow to accommodate more servers as needed.
Bottlenecks whenmany processes access a single file.

• × file replication: not supported for updates. Additional services can be added to do this
• ✓ Hardware/OS heterogeneity: NFS implemented onmost OS and hardware platforms
• ✓ fault tolerance: acceptable. NFS is stateless, idempotent. Options to handle failures
• ✓ consistency: tunable. not recommended for close synchronisation between processes
• ✓ security: Kerberos is integrated with NFS. Secure RPC also an option
• ✓ efficiency: acceptable, can be tuned.

8


	File Systems
	File System Layers
	UNIX file system operations

	Distributed File System Requirements
	Transparency
	Concurrent file updates
	File replication
	Heterogeneity
	Fault tolerance
	Consistency
	Security
	Efficiency

	File Service Architecture
	Flat file service
	Directory service
	Client module

	Flat file service interface
	RPC Calls

	Flat file service access control
	Directory service interface
	File Group
	Sun Network File System
	Virtual File System
	Client Integration
	Server Interface
	Mount Service

	Server caching
	Client Caching
	NFS Summary

