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File Systems

• file system: provides

– convenient programming interface for disk storage
– access control
– file-locking (for file sharing)

• distributed file system: emulates non-distributed file system for client programs running on
multiple remote computers

• file service: allow programs to store and access remote files as they do local ones

– access files from any computer on intranet
– hosts providing such services canbeoptimised formultiple disk drives, and can supply file
services for other services (web, email)

– facilitates backup and archiving

• files: data + attributes
• directory: file containing list of other files

File System Layers

• Directory: relate file names to IDs
• File: relate file IDs to particular files
• Access control: check permissions for requested operations
• File access: read/write file data/attributes
• Block: access/allocate disk blocks
• Device: disk IO and buffering

UNIX file system operations

• open
• create
• close
• read
• write
• lseek: move read/write pointer to new position in the file
• link: add new name for file
• stat: get file attributes
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Distributed File System Requirements

• e.g. Hadoop

Transparency

• Access: clients unaware of distribution of files

– uniform API for accessing local and remote files

• Location: clients see a uniform file name space

– names of files should be consistent regardless of where the file is physically stored

• Mobility: client programs/admin services don’t need to change when the files are physically
moved

• Performance: client programs should perform satisfactorily while the load varies in specified
range

• Scaling: service can be expanded by incremental growth

Concurrent file updates

• multiple clients’ updates should not interfere with each other
• should be able to manage policies

File replication

• multiple copies of files over several servers: better capacity for accessing the file, better fault
tolerance

Heterogeneity

• client and server should be able to operate on various hardware/OS

Fault tolerance

• transient communication problems shouldn’t result in file corruption
• invocation semantics: can be

– at-most-once
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– at-least-once: simpler, but requires idempotent operations

• servers can be stateless such that there is no recovery required if a server goes down

Consistency

• multiple, concurrent access to file should see consistent representation of the file
• file metadata should be consistent on all clients

Security

• client requests should be authenticated
• data transfer should be encrypted

Efficiency

• comparable to conventional file systems

File Service Architecture

Figure 1: File system architecture
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• abstract architecture based on NFS

Flat file service

• implements operations on contents of files
• UFID, Unique File Identifier given to flat file service to refer to the file to operate on

Directory service

• mapping between text file names and UFID
• creates directories, andmanages files within them
• client of flat file service, as directory files are stored there

Client module

• integrates directory service and flat file service to provide API expected by client applications
• client maintains a list of available file servers
• caching to improve performance

Flat file service interface

• UNIX interface requires the filesystem to maintain state (in the file pointer), which is manipu-
lated during read/write

• flat file service differs from UNIX interface for fault tolerance

– repeatable operations: except for Create, operations are idempotent, permitting at-
least-once RPC semantics

– stateless server: flat file service doesn’t need to maintain state. Can be restarted after
failure and resume operation without need for clients/server to restore any state

– files can be accessed immediately, c.f. UNIX where they first need to be opened

RPC Calls

• Read
• Write
• Create
• Delete
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• GetAttributes
• SetAttributes

Flat file service access control

• authenticate RPC caller
• prevent illegal operations: e.g. legal UFIDs, enforce access privileges
• cannot store access control state: would break idempotency
• options:

– access check made whenever file name is converted to UFID, and results encoded as a
capability returned to client for submission to flat file server

– user ID canbe submitted for every request, with access checks performedby flat file server
for each file operation

Directory service interface

• translation from file name to UFID
• abstract directory service interface
• 0 TODO: <22-10-20, yourname> 0

File Group

• collection of files on a given server
• server may hold several file groups, and file groups can bemoved between servers
• files cannot change file group
• permits file service to be implemented across several servers
• files given UFIDs that ensure uniqueness across different servers

– e.g. concatenate server IP address with a date the file was created
– permits files in a group (i.e. files with common file group id) to be relocated to a different
server without conflicting with files already on the server

• mapping of UFIDs to servers can be cached at client module

Sun Network File System

• uses architecture described above
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• many implementations of NFS following NFS protocols, using a set of RPCs that providemeans
for the client to perform operations on the remote file store

• NFS client makes requests to NFS server to access files

Figure 2: Sun NFS

Virtual File System

• VFS used by UNIX to provide transparent access to any number of different file systems, com-
bining remote and local file systems into a single filesystem

– maintains VFS structure for each filesystem in use
– maintains v-node for each open file, which records whether file is local/remote

* if local, v-node contains reference to i-node on UNIX file system

* if remote, v-node contains reference to files NFS file handle, a combo of filesystem
identifier, i-node number and any other identifying info

• NFS integrated in the same way
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Client Integration

Server Interface

Mount Service

•

Server caching

• conventional UNIX systems: data read from disk/pages are retained in main memory buffer
cache, and evicted when buffer space is needed. Accesses to the cache do not require disk ac-
cess

– read-ahead: anticipates read accesses, fetches pages following those recently read
– delayed-write/write-back: optimises writes to disk by only writing pages when both
modified and evicted

* UNIX sync flushes modified pages every 30s

– works for conventional filesystem on single host, because there is only 1 cache and file
accesses cannot bypass it

• use of cache at server for client reads introduces no problems

• use of cache for writes requires special care: client needs to be confident writes are persistent
if server crashes

• options: cache policies used by the server

– Write-through: data written to cache and directly to disk

* increases disk I/O and latency for write

* operation completes when the data has been written to disk

* poor when server receives large number of write requests for the same data

* saves network bandwidth

– Commit: data is written to cache and is written to disk when a commit operation is re-
ceived for the data

* reply sent when data has been written to disk

* uses more network bandwidth

* may lead to uncommitted data being lost

* receives full benefit of cache
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Client Caching

• NFS Client caches data reads, writes, attributes and directory operations to reduce network IO

• cachingat the client: problem for cache consistency, asdifferent cachesonmultiple clients, and
the server

• reading andwriting are both problems: a write on another client between two reads will lead
to the second read being incorrect

• NFS clients poll the server for updates

• 𝑇𝑐: time when a cache block was last validated by the client

• 𝑇𝑚: time when a block was last modified

• cache block is valid at time 𝑇 if

– 𝑇 − 𝑇𝑐 < 𝑡 where 𝑡 is a freshness interval, or
– 𝑇𝑚,𝑐𝑙𝑖𝑒𝑛𝑡 = 𝑇𝑚,𝑠𝑒𝑟𝑣𝑒𝑟

• small value for 𝑡 leads to close approximation of one-copy consistency, but costs greater net-
work IO

• in Sun Solaris clients 𝑡 is set adaptively (3-30s) depending on file update frequency

• validity check is made on each access to a cache block

– first half of check requires no network IO

NFS Summary

• ✓ access transparency: applications are usually unaware files are remote
• × location transparency: not enforced; no global namespace as different clients can mount
filesystems at different points

• × mobility transparency: if server changes, the client must be updated
• ∼ scalability: good, can be better. System can grow to accommodate more servers as needed.
Bottlenecks whenmany processes access a single file.

• × file replication: not supported for updates. Additional services can be added to do this
• ✓ Hardware/OS heterogeneity: NFS implemented onmost OS and hardware platforms
• ✓ fault tolerance: acceptable. NFS is stateless, idempotent. Options to handle failures
• ✓ consistency: tunable. not recommended for close synchronisation between processes
• ✓ security: Kerberos is integrated with NFS. Secure RPC also an option
• ✓ efficiency: acceptable, can be tuned.
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