
Operating System Support 2020-10-15

Operating System Support

Motivation

• in DS context, OS lies belowmiddleware layer
• the structure and services theOSprovides impact themiddleware’s ability todeliver distributed
resource sharing

Network vs Distributed OS

• network operating system: have inbuilt networking capability, with each node remaining au-
tonomy in managing its own resources

– e.g. UNIX, Windows

• single system image/distributed operating system: OS has control over all nodes in the sys-
tem

– long time goal, but not in general use:

* lots of apps have already been developed for existing systems

* users prefer to have a degree of autonomy over their machines

Core OS components

• memory manager: manage physical and virtual manager
• process manager: creation and operations on processes
• threadmanager: thread creation, synchronisation, scheduling
• communicationmanager: communication between threads attached to different processes on
the samemachine

• supervisor: dispatch interrupts, system call traps. Control of MMU, hardware caches, processor
register manipulation

– Windows: Hardware Abstraction Layer

Operating System Functions

• implement resource management policies
• encapsulate resources (providing a useful interface to application programmer)
• protect resources from illegitimate access
• facilitate concurrent sharing of resources

1



Operating System Support 2020-10-15

Protection

• kernel: program that is loaded from system initialisation, and is executed with full access priv-
ileges to all physical resources on the host computer

– register in CPUmaintains current mode
– in user mode, only a subset of CPU instructions is available

• address space: collection of ranges of virtual memory locations with particular rights (rwx)

– user level process: executes in user mode and has a user-level address space (restricted
access rights c.f. kernel address space)

• system call trap: invocation mechanism for resources managed by the kernel

– corresponds to a TRAP instruction, switching to kernel mode and kernel address space
– process switching is expensive

Processes and Threads

• process: execution environment + threads

• execution environment: unit of resource management: an address space, communication in-
terfaces, local resources (e.g. semaphores)

• thread (of execution): activity abstraction executing within an execution environment

• analogy: execution environment is a stoppered jar with air and food inside. Initially the jar has
a single fly. This fly can produce and kill other flies, as can its progeny. Any fly can consume
any resource in the jar. Flies can be programmed to queue up in an orderlymanner to consume
resources.

• purpose of multiple threads of execution is to maximise the degree of concurrent operations.
This enables overlap of computation with slow I/O and concurrent processing on multiproces-
sors

• copy-on-write: consider a fork creating a copy of a process, which includes its text + heap +
stack

– default: the inherited region is copied by sharing the page frames that comprise the inher-
ited region, so no physical copying occurs

– page in the region is only physically copied when a process attempts to modify it
– also used for copying large messages

2



Operating System Support 2020-10-15

Architectures for Multi-Threaded Servers

Figure 1: Server threading architectures

Worker pool

• fixed pool of worker threads
• each request is placed in a request (priority) queue by an IO thread
• workers pull requests off the queue when they are free
• disadvantages:

– inflexible: cannot scale up if there are insufficient workers
– high level of switching between IO and worker threads as they manipulate the queue

Thread-per-request architecture

• IO thread spawns a new worker thread for each request
• the worker destroys itself once the request has been fulfilled
• advantages:

– workers don’t contend for a shared queue
– number of workers can scale with number of requests

• disadvantages:

– overhead of thread creation/destruction

Thread-per-connection architecture

• server creates new worker thread when a client makes a connection, and destroys it when the
connection is closed

3



Operating System Support 2020-10-15

• the thread can then be used to service multiple requests
• advantage:

– less overhead in creating/destroying threads, as well as creating/tearing down connec-
tions

• disadvantages:

– only suitable for connection-oriented protocols
– may be delay while a worker is servicing requests while another worker is idle

Thread-per-object

• each thread created is associated with a remote object
• this uses a per-object queue
• advantages/disadvantages as per thread-per-connection

Using Threads vs Processes

• creating a new thread in an existing process is cheaper than creating a process
• switching to a different thread within the same process is cheaper than switching threads be-
longing to different processes

• threads within a process may share data and other resources conveniently and efficiently
compared with separate processes

• threads within a process are not protected from one another

Context Switch

• processor context: values of processor registers
• context switch: transitionbetweencontextswhen switchingbetween threads, orwhena single
threadmakes a system call or takes another type of exception

– save processor’s original register state
– load new state
– (possibly) domain transition: switch between user/kernel mode

Threads in Java

• new threads are created in JVM in SUSPENDED state

4



Operating System Support 2020-10-15

• start()makes the threadRUNNABLE, and then it executes therun()methodof the contained
object

• synchronized: designate a method/block as belonging to a monitor associated with an indi-
vidual object

– monitor guarantees at most one thread can execute within it at any time

• wait(): used to block a thread while waiting for a particular criteria
• notify(): unblocks at most one thread
• join(): blocks caller until the target thread terminates
• interrupt(): used to prematurely wake a waiting thread

Communication and Invocation

• invocation: constructwhose purpose is to bring about an operation on a resource in a different
address space

– e.g. RMI, RPC, event notification

• OS support: questions for distributed systems

– communication primitives
– protocols and openness
– efficiency
– high-latency/disconnected operation support

5


	Operating System Support
	Motivation
	Network vs Distributed OS
	Core OS components
	Operating System Functions
	Protection
	Processes and Threads
	Architectures for Multi-Threaded Servers
	Worker pool
	Thread-per-request architecture
	Thread-per-connection architecture
	Thread-per-object

	Using Threads vs Processes
	Context Switch

	Threads in Java
	Communication and Invocation


