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Models

Models are used to provide abstract, simplified, consistent description of some aspect of interest of
distributed system design.

• physical: describe types of computers/devices that constitute a system and their interconnec-
tivity without details of specific computer/networking technologies

– most explicit
– considers underlying hardware elements

• architectural: describe system in termsof computational and communication tasks performed
by computational elements

– e.g. client-server, peer-to-peer
– elements: components of the systemwhich interact
– patterns: how components are mapped to underlying system
– middleware: existing solutions to common problems

• fundamental: abstract perspective to describe solutions to particular issues faced bymost dis-
tributed systems

– non-functional aspects e.g. interaction, failure, security, reliability, performance

Physical Models

• baseline: extensible set of computer nodes interconnected by computer network for passing
of messages

• 3 generations of distributed systems

1970s-80s, early distributed systems

• 10-100 nodes
• local area network, usually Ethernet
• limited Internet connectivity: file transfer, email
• shared local printers and file servers

1



1990s, Internet-scale distributed systems

• large-scale distributed systems emerged with rapid growth in Internet
• extensible set of nodes interconnected by network of networks (i.e. the Internet)
• significant heterogeneity: networks, computer architecture, operating systems, languages, …
• emphasis on open standards

Contemporary distributed systems

• nodes in earlier generations were primarily desktop computers which were:

– static: not moving around
– discrete: not embedded in other objects
– autonomous: largely independent of other computers

• in contrast, modern distributed systems don’t satisfy these properties:

– mobile computing: nodes have varying location, needing service discovery and sponta-
neous interoperation

– ubiquitous computing: computers embedded in everyday objects
– cloud computing: pools of nodes together providing a service

Architectural Models

• system architecture: structure in terms of separately specified components and their interrela-
tionships

– goal: ensure the structure meets present/future demand
– concerns: reliability, managability, adaptability, cost-effectiveness

• architectural elements: interacting components of system
• architectural patterns:
• middleware

Architectural Elements

Building blocks:

• communicating entities:

– system perspective: threads, processes, nodes
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– programming perspective: objects, components, web services

• communication paradigm: e.g. message queue, publish/subscribe
• roles and responsibilities: e.g. client, server, peer
• placement: mapping onto physical distributed infrastructure

Communicating Entities

System-oriented perspective

• processes: usually processes are the communicating entities

– threads: strictly threads may be the endpoints of communication

• nodes: sensor networks, OSmay not support process abstraction

Problem-oriented perspective

• objects: objects accessed via interfaces
• components: specify interfaces and make dependencies explicit, providing a more complete
contract with which to construct the system than objects

• web services: closely related to objects/components. Intrinsically integrated with the WWW,
using web standards to represent and discover services.

– software application identified by a URI with interfaces defined, described, discovered as
XML

– supports direct interactionwith other software agents via XMLmessage exchange through
IP

• objects/components are usually internal to an organisation for tightly coupled applications
• web services are complete services

Interfaces

• interface definition: specifies set of functions that can be invoked by external processes
• programmers need not know underlying implementation of the service, only the abstraction
offered

• a stable interface can change transparently
• careful design needed: performancemay be impacted if manymessages need to be exchanged
to get things done

• backwards compatibility/breaking changes need to be carefully considered
• ideally: succinct, expressive
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Communication Paradigms

Direct Communication: coupled senders/receivers

• interprocess communication: low-level support for communication between processes in dis-
tributed systems

– message passing primitives, socket programming, multicast

• remote invocation: most common communication paradigm for distributed systems

– 2 way exchange between communicating entities which resulting in remote operation be-
ing called

Examples: Remote Invocation

• request-reply protocol: pattern onmessage-passing to support client-server computing

– pairwise message exchange
– most DS use RPC/RMI, but both are supported by underlying request-reply exchanges

• remote procedure call (RPC): procedures in processes on remote computers can be called as
if they are procedures in the local address space.

– baked in access and location transparency

• remotemethod invocation (RMI): resembles RPC but in a world of distributed objects

– a calling object invokes a method in remote object

Indirect Communication: allow decoupling of senders/receivers Uncoupling

• space uncoupling: senders don’t need to knowwho they are sending to
• time uncoupling: senders/receivers don’t need to exist at the same time

Examples: Indirect Communication

• group communication: delivery of messages to set of recipients; one-to-many

– abstraction of group with an ID, which maintains groupmembership
– recipients elect to receive messages by joining a group
– senders sendmessages to the group using the group ID

• publish-subscribe: large number of producers distributing information to a large number of
consumers (with different interests); one-to-many
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– uses intermediary service to ensure efficient routing of information fromproducers to con-
sumers

• message queues: point-to-point service; producer sends messages to a specified queue

– consumer receives messages from the queue

• tuple space: processes can place structured data in a persistent tuple space

– other processes can read/remove tuples by specifying patterns of interest
– readers/writers don’t need to exist simultaneously

• distributed sharedmemory: abstraction for sharing data between processes that don’t share
physical memory

Roles and Responsibilities

• processes, not machines, are the subject of roles
• client-server/centralised: client processes interact with individual server processes

– client processes establish connections with server
– server processes listen for incoming connections
– clients never communicate: everything goes through the server
– most important andmost widely used architecture

• peer-to-peer/decentralised: all processes play similar role as peers

– resources of each peer are used, so the system resources scale with the number of users
– substantially more complex than client-server architecture
– any process canmake/receive connections from any other process
– no hierarchy: all processes have same capabilities
– no single point of failure: if a client fails, probably won’t be noticed
– e.g. BitTorrent

• P2P vs C-S security:

– for client server to be insecure, server has to be compromised. Requires a lot of trust in
server: if attacker compromises the server, that’s all that’s needed

– P2P: attacker may have to break many components to take down system/get data

Napster

• hybrid architecture: client/server + P2P
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– (C/S) clients send list of music and IP address to index server
– (C/S) another client queries the index server, looking for somemusic
– (C/S) index server replies with IP addresses of those that have the music
– (P2P) client then establishes connections to these peers to start the download

Figure 1: Napster Architecture
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Placement

Figure 2: P2P andmultiple servers

• how objects/services map onto physical distributed infrastructure
• crucial determinant of DS properties: performance, reliability, security
• where to place a given client/server in terms of machines/processes
• needs to account for e.g.:

– communication pattern between entities
– reliability of machines and current loading
– quality of communications

• mapping services to multiple servers: services can be implemented as multiple server pro-
cesses in separate host computers which interact to provide a service to clients

– increases capacity of system
– can partition/replicate across multiple hosts
– cluster: thousands of commodity processing boards

• cache: store of recently used objects that is closer to some clients than objects themselves

– reduce network traffic and server load
– may improve performance for client

• proxy server: increase availability/performance by reducing load on wide area network

– also used for: caching, hide identity of client, translation between APIs
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Figure 3:Web proxy

• mobile code: applets/Javascript

– good interactivity, allows asynchronous behaviour (AJAX)
– server provides code to browser which client browser runs to access services
– potential security threat

• mobile agent: running program (code + data) that travels fromcomputer to computer, carrying
out a task on someones behalf, typically collecting data, eventually returning with results

– reduced communication cost and time by replacing remote invocations with local ones
– big security threat, and web crawlers can still access resources successfully through re-
mote invocations

– used to install/maintain software on computers within organisation
– not widely used anymore

Architectural Patterns

• patterns build on primitive architectural elements, providing composite recurring structures
that work well in particular circumstances

Layering

• layering: partition system into layers, with a given layermaking use of services provided by the
layer below. Higher layers are unaware of lower layer implementation details

– vertical organisation of services into service layers

• platform: lowest-level hardware/software; e.g. Intel x86/Linux
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• middleware: software that masks heterogeneity and provides useful programmingmodel.

– Processes interact to implement communication/resource-sharing.

– Provides building blocks for constructing software (value added services)

* naming

* security

* transactions

* persistent storage

* event service

– adds overhead: additional abstraction
– communication cannot be completely hidden so that error handling can occur properly

Figure 4: Layers in Distributed Systems

Tiered architecture

• tiered architecture: complements layering. Horizontal partitioning within a layer, separating
functionality into different servers. e.g.

– presentation logic: user interaction/view as presented to user
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– application logic: app-specific processing/business logic
– data logic: persistent storage; DBMS
– 3-tier: separates each logical element into a distinct server
– only applicable to client-server; P2P is by definition a single tier

• thin client: software layer supporting window-based UI local to the user while accessing ser-
vices on a remote computer

– allows simple, low-cost devices to be used with a wide range of services
– poor performance for highly interactive graphical activities: CAD, image processing
– e.g. X terminals
– only does IO: draws things on screen/transmits mouse/keyboard
– server does all the computation
– Virtual Network Computing (VNC): remote access to GUI through VNC client via VNC pro-
tocol

• proxy: support location transparency in RPC/RMI

– proxy created in local address space to represent remote object: offers same interface
as remote object, meaning application programmer calls on the proxy without knowing
about the distributed nature

– also used for replication/caching

• brokerage: supports interoperability in complex distributed systems

Figure 5: Three-tier Architecture
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Fundamental Models

• fundamental models allow you to analyse distributed systems regardless of architecture

– understand support of non-functional requirements
– e.g. how secure is the system? what attacks can it withstand?

• should only contain essential ingredients to understand/reason about aspect’s of system be-
haviour

• purpose

– make explicit relevant assumptions
– make generalisations concerning what is possible/impossible given those assumptions

* desirable properties

* general purpose algorithms

• aspects of distributed systems captured in fundamental models:

– interaction: account for inherent delays and absence of global clock
– failure: classify faults
– security: classify forms of attacks

Interaction Models

• model interaction between processes of a distributed system
• Message passing between processes produces

– communication: information flow
– coordination: synchronisation, ordering

• distributed systems composedofmanyprocesses canbedescribedbydistributedalgorithms:

– steps taken by each process
– transmission of messages between processes

Performance of communication channels

• communication performance is often a limiting characteristic
• latency: delay between start of message transmission from process 1 and beginning of receipt
by process 2

• bandwidth: information transmitted/time
• jitter: variation in time taken to deliver a series of messages
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– most relevant to multimedia

Figure 6: Performance

Computer clocks and timing events

• each computer has its own internal clock
• timestamps between processes can vary

– time set differently initially
– differences in clock drify rate

• GPS can synchronise clocks (∼ 1𝜇𝑠). Doesn’t work inside buildings
• synchronise to time server

– time server synchronises with GPS and time infrastructure

• e.g. collaborative whiteboard

– take order of arrival at server if only the logical ordering matters, rather than exact order
– users can tolerate small errors

Synchronous Systemmodel
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• assumes known bound for

– time to execute each step of process
– message transmission delay
– local clock drift rate

• view execution/message passing in terms of rounds. Everything is assumed to be completed
before the next round commences

• time period could be long: e.g. 1 day for a sensor update system
• assumptions allow simplification of the system, making it easier to analyses
• if an operation didn’t complete in time: system is operating outside bounds of the model, may
result in an error

Figure 7: Synchronous model

Asynchronous systemmodel
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• assumes no bound on:

– execution speed
– transmission delays
– clock drift rates

• processes can just proceed when they are ready: no notion of rounds
• exactly models the Internet: no intrinsic bound on server/network load
• actual distributed systems are very often asynchronous:

– processes need to share processors
– communication channels need to share the network

• necessitates queues for send/receive
• harder to program, but can simplify reasoning

Figure 8: Asynchronous

Event Ordering

• some applications require event ordering: i.e. whether an event at one process occurred be-
fore/after/concurrently with another event at another process
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• messages may be received out of logical order: 𝑚1 received after 𝑚3 even though it was trans-
mitted first

Figure 9: Event Ordering

• if clocks could be synchronised, eachmessage could simply be timestamped
• if clocks are roughly synchronised, timestamps will often be in correct order
• logical ordering: you knowwhen events occur relative to others

– X sends 𝑚1 before Y receives 𝑚1
– Y sends 𝑚2 before X receives 𝑚2
– Y receives 𝑚1 before sending 𝑚2

• logical time: assign a number to each event based on its logical ordering (1-4 in diagram)

Failure Models

Define and classifies faults
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Figure 10: Failures

Omission failures

• process/communication channel fails to do what its expected to do
• process crash or network failure
• process failure:

– crash: may not be detectable
– fail-stop: crash can detect with certainty that the process crashed

• communication channel: failure occurs

– send omission failure: between sending process and outgoing message buffer
– channel omission failure: in channel
– receive omission failure: between incomingmessage buffer and receiving process
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Figure 11: Communication channel omission failures

• repeated failures to respond during invocation: suggestive
• Detection: timeouts

– can only indicate a process is not responding: may have crashed, be still processing, or
messages are en route

Arbitrary failures

• arbitrary failures: worst possible failure semantics

– process: arbitrarily omits/performs intended/unintended processing steps
– communication channel:

* message contents corrupted,

* non-existent messages delivered,

* messages deliveredmore than once

* rare due to checksums, sequence numbers, etc.

– any type of error may occur
– e.g. process sets wrong values in data items,
– e.g. process returns a wrong value in response to an invocation

Timing failures

• applicable to synchronousdistributed systems,whichhave time limits set: execution time,mes-
sage delivery time, clock drift rate

• timing failures: time limits exceeded

– maymean responses are unavailable to clients in specified time interval
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Figure 12: Timing Failures

Reliable Communication

• validity: any message in outgoing buffer is eventually delivered to incomingmessage buffer
• integrity: message received is identical to the one sent

– nomessage is delivered twice

Security Models

• securing processes, communication channels
• protecting objects against unauthorised access
• access rights: specify who is allowed to perform operations on an object
• principal: each invocation is associated with a principal (user/process)
• server responsible for

– verifying identity of principal
– checking principal has sufficient access rights

• enemy/adversary: assumed to be capable of sending anymessage to any process or reading/-
copying any message between a pair of processes

Threats

• to processes: servers/clients cannot be certain of source of message, as addresses can be
spoofed

• to channels: enemy can copy, alter, inject messages
• denial of service
• mobile code: corrupt server/service arbitrarily
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Addressing threats

• cryptography, shared secrets, encryption
• authentication
• secure channel: encryption + authentication to build a secure channel as a service layer on top
of existing communication channel

Questions

2.1 Provide three specific and contrasting examples of the increasing levels of heterogeneity experi-
enced in contemporary distributed systems as defined in Section 2.2. page 39

• ubiquitous computing: e.g. smart fridges, mobile phones, tablets, laptops, … with significant
differences in performance, input devices, etc.

• mobile computing: nodes maymove from location to location
• cloud computing: pools of nodes that together provide a service

2.2 What problems do you foresee in the direct coupling between communicating entities that is im-
plicit in remote invocation approaches? Consequently, what advantages do you anticipate from a
level of decoupling as offered by space and time uncoupling? Note: you might want to revisit this
answer after reading Chapters 5 and 6. page 43

• idempotency

2.3 Describe and illustrate the client-server architecture of one or more major Internet applications
(for example, the Web, email or netnews). page 46

theWeb: a client (i.e. a browser) opens TCP connections in order to sendHTTP requests. AWeb server,
listening on port 80, responds with a HTTP response.

2.4 For the applications discussed in Exercise 2.1, what placement strategies are employed in imple-
menting the associated services? page 48
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