
Haksell 2020-11-08

Functional Programming

Expression Evaluation

• conceptually, you can consider Haskell runtime as executing a loop which

– searches for a function call in the current expression
– searches for a matching equation for the function
– sets values of variables in matching pattern to corresponding arguments
– replaces LHS of equation with RHS

• loop terminates when current expression contains no function calls
• what order should be chosen for rewriting?

– Church-Rosser theorem: order doesn’t matter for final value
– does matter for efficiency

Church-Rosser Theorem

• for rewriting systemof lambda calculus, regardless of the order inwhich the original term’s sub-
terms are rewritten, final result is always the same

• Haskell is based on variant of lambda calculus, so the theorem holds
• not applicable to imperative languages

Referential transparency

• referential transparency: expression can be replaced with its value

– requires expression has no side effects and is pure: must return same results on the same
input

• impure functional language: e.g. Lisp, permits side effects like assignment so programs are
not referentially transparent

Single Assignment

• imperative/OO languages: variable has current value, which is mutable
• functional languages: variables are single assignment

– no assignment statements
– immutable: can define variable’s value, but cannot redefine it

1

Haksell 2020-11-08

Haskell type system

• type system is strong, safe, static
• strength refers to how permissive a type system is, with a stronger type system accepting fewer
expressions as valid than a weaker one

• strong: type system guarantees a program cannot errors from trying to write expressions that
don’t make sense

– no loopholes: cannot make an integer a pointer

* C: (char *)42

• safe: running programwill never crash due to a type error
• static: types are checked when program is compiled

– c.f. dynamic: types are checked when program is run
– safe follows partially from static

• types can be automatically inferred

Type classes

• a type in Ordmust also be in Eq

Disjunction and conjunction

1 data Suit = Club | Diamond | Heart | Spade
2 data Card = Card Suit Rank

• enumerated type: value of type Suit is either Club or Diamond…

– disjunction of values

• structure type: value of type Card contains a value of type Suit and a value of type Rank

– conjunction of values

• most imperative languages permit types as disjunction or conjunction, but not both at once
• Haskell doesn’t have this limitation

Discriminated Union Types

• discriminated union types: can include both disjunction and conjunction

2

Haksell 2020-11-08

– in C, you could create a similar union, but wouldn’t be able to determine which field was
applicable

– in Haksell, data constructor tells you, hence discriminated

• algebraic type system: permits combination of disjunction + conjunction

– algebraic types: types produced under algebraic type system

1 data JokerColor = Red | Black
2 data JCard = NormalCard Suit Rank | JokerCard JokerColor

• value of JCard constructed

– either using NormalCard constructor, containing a value of type Suit and a value of type
Rank

– or using JokerCard constructor, containing a value of type JokerColor

Representing Expressions in Haskell

1 data Expr
2 = Number Int
3 | Variable String
4 | Binop Binopr Expr Expr
5 | Unop Unopr Expr
6
7 data Binopr = Plus | Minus | Times | Divide
8 data Unopr = Negate

• very direct, much shorter than C/Java implementation, no comments required

Errors

The C implementation is error prone:

• able to access fields that aren’t meaningful

– caught by Haskell, Java compiler

• can forget to initialise fields

– caught by Haskell compiler
– not caught by Java

• can forget to process some alternatives

3

Haksell 2020-11-08

– caught by Java
– can be caught by Haskell (with particular flags)

Memory

• C: requires 8 words per expression
• Java/Haskell: maximum of 4

– can bemore efficient than a C program

Maintenance

• adding a new expression:

– Java: add new class

* implement all methods

– C: add new alternative to enum

* add neededmembers to the type

* add code for it to all functions handling that type

– Haskell: add new alternative to the type

* add code to all functions handling that type

• adding a new operation for expressions

– Java: add newmethod to abstract Expr class

* implement it for all classes

– C: write one new function
– Haskell: write one new function

Non-Exhaustive Patterns

• Haskell: Detect with -fwarn-incomplete-patterns

– if not handled, will throw an exception

• C: without default case programmay continue and silently compute incorrect result

– requires more implementation of default cases

• Java: forgetting to write amethod for subclass will probably inherit the wrong behaviour of the
superclass

4

	Functional Programming
	Expression Evaluation
	Church-Rosser Theorem

	Referential transparency
	Single Assignment
	Haskell type system
	Type classes
	Disjunction and conjunction
	Discriminated Union Types

	Representing Expressions in Haskell
	Errors
	Memory
	Maintenance

	Non-Exhaustive Patterns

