
Declarative Programming 2020-11-03

Declarative Programming

Differences to Imperative Languages

• focus is on what to do, rather than how to do it
• higher level of abstraction
• easier to use powerful programming techniques
• clean semantics: can do things with declarative programs you can’t do with imperative ones

Paradigms

• Imperative: based on commands, as instructions and statements

– commands are executed
– commands have an effect: update computation state. Later code may depend on this
update

• Logic: based on finding values that satisfy a set of constraints

– constraints may have 0 or many solutions
– constraints have no effect

• Functional: based on evaluation of expressions

– expressions are evaluated
– expressions have no effect

Side Effects

• code has a side effect if, in addition to producing a value, it alsomodifies some state, or has an
observable interaction with calling functions/outside world.

• examples

– modify global/static variable
– modify an argument
– raise an exception
– write data
– read data
– call other functions that have side effects

1



Declarative Programming 2020-11-03

Destructive update

• imperative languages: natural way to insert an entry in a table is to modify the table in place

– destroys the old table

• declarative languages: instead create a new version of the table, while the old version remains

– drawback: language has to work harder to recover memory and ensure efficiency
– benefit: don’t need to worry about what other code is affected by the change

* can keep previous version for comparison/undo

* immutabilitymakes parallel programming significantly easier

2


	Declarative Programming
	Differences to Imperative Languages
	Paradigms
	Side Effects
	Destructive update


