
Monads 2020-10-04

Monads

Table of Contents

Notes: Computerphile Monads

Consider a data constructor for an expression which captures integer division:

1 Data Expr = Val Int | Div Expr Expr

Let’s write a function that can evaluate these expressions:

1 eval :: Expr -> Int
2 eval (Val n) = n
3 eval (Div x y) = (eval x) `div` (eval y)

But this is unsafe: if you attempt division by 0 you’ll get an error. So let’s define a safe division opera-
tion

1 safediv :: Int -> Int -> Maybe Int
2 safediv n m = if m == 0
3 then Nothing
4 else Just (n `div` m)

Nowwe can rewrite eval to be safe:

1 eval :: Expr -> Maybe Int
2 eval (Val n) = Just n
3 eval (Div x y) = case eval x of
4 Nothing -> Nothing
5 Just n -> case eval y of
6 Nothing -> Nothing
7 Just m -> safediv n m

Now we have a program that will work safely. But it’s pretty ugly and verbose. How can we make it
better, and look more like the original code, while still being safe?

First observe that there’s a commonpatternhere: 2 caseanalyses, doing the same thing. Let’s abstract
this out, introducing m, f:

1 case m of
2 Nothing -> Nothing
3 Just x -> f x

And let’s give a name to this m >== f:

1 m >== f = case m of
2 Nothing = Nothing

1



Monads 2020-10-04

3 Just m -> f m

With this definition, let’s rewrite eval:

1 eval :: Expr -> Maybe Int
2 eval (Val n) = return n
3 eval (Div x y) = eval x >>= (\n ->
4 eval y >>= (\m ->
5 safediv n m))

This is equivalent to the last definition of eval, but we’ve abstracted away all the case analyses. But
we can still do better, with the syntactic sugar of the do notation, which gives a helpful shorthand for
programs of this sort:

1 eval :: Expr -> Maybe Int
2 eval (Val n) = return n
3 eval (Div x y) = do n <- eval x
4 m <- eval y
5 safediv n m

This is much nicer. All the failure management is handled automatically.

Where do themonads come in?

So what does all this have to do with monads? Effectively we have rediscovered the Maybemonad,
which comprises 3 things: the Maybe type constructor, and 2 functions:

• return :: a -> Maybe: a bridge between the pure and the impure
• >>= :: Maybe a -> (a -> Maybe b)-> Maybe b: sequencing

That’s all a monad is:

1. Type constructor
2. return definition
3. >>= definition

What’s the point?

1. The same idea works for other effects: I/O, mutable state, non-determinism, … Monads give a
uniform framework for thinking about programming with effects.

2. Supports pure programming with effects: i.e. gives you a way to do impure things in a pure
language

2



Monads 2020-10-04

3. Use of effects is explicit in types: evaluator function here takes an Expr and returns a Maybe
Int. You explicitly state what effects may be produced.

4. Provides ability to write functions that work for any effect, effect polymorphism. Haskell has
libraries of generic effect functions.

3


	Monads
	Table of Contents
	Notes: Computerphile Monads
	Where do the monads come in?
	What's the point?



