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Getting started

• hugs: interpreter primarily used for teaching
• ghc: Glasgow Haskell Compiler, used for real work
• ghci: REPL for Haskell
• runghc: program for running Haskell programs as scripts without compilation
• Prelude: standard library of useful functions
• Haskell requires type names to start with an uppercase letter, and variable names to start with
a lowercase letter

Types and Functions

• Haskell types are: strong, static, and canbe automatically inferred,making it safer thanpopular
statically typed languages, andmoreexpressive thandynamically typed languages. Muchof the
debugging gets moved to compile time

• strength refers to how permissive a type system is, with a stronger type system accepting fewer
expressions as valid than a weaker one

• strong: type system guarantees a program cannot errors from trying to write expressions that
don’t make sense

• well typed expressions obey the languages type rules
• Haskell doesn’t perform automatic coercion
• static: compiler knows the type of every value and expression at compile time before any code
is executed

– compiler detects when you try to use expressions whose types don’t match
– makes type errors at runtime impossible

• type inference: compiler can automatically deduce the types of most expressions
• type signature: :: Type
• function application is left-associative: a b c d is equivalent to (((a b)c)d)
• side effect: dependency between global state of the system and the behaviour of a function

– invisible inputs to/outputs from functions

• pure function: has no side effects, the default in Haskell
• impure function: has side effects
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– can be identified by type signature: the result begins with IO

• variables in Haskell allow you to bind a name to an expression. This permits substitution of the
variable for the expression

• lazy evaluation: aka non-strict evaluation. Track unevaluated expressions as thunks anddefer
evaluation until when it is really needed

• parametric polymorphism: most visible polymorphism supported by Haskell, that has influ-
enced the generics and templates of Java/C++. This is the ability to specify behaviour without
knowing the type.

• Haskell doesn’t support subtype polymorphism as it isn’t object oriented, nor does it support
coercion polymorphism as a deliberate design choice to avoid automatic coercion

• in ghci you can list the type of an expression using :t or :type

Comment on Purity

• makes understanding code easier: you know things the function cannot do (e.g. talk to the net-
work), what valid behaviours could be, and it is inherently modular, because each function is
self-contained with a well-defined interface

• pure code makes working with impure code simpler: code that must have side effects can be
separated from code that doesn’t need side effects. Impure code is kept simple, with heavy
lifting in pure code.

• minimises attack surface

Type constructors

[] and (,) are type constructors: they take types as input and build new types from them

String s

String in Haskell is a type synonymwith [Char]

Defining type synonyms

• similar to C’s typedef

1 type Pair = (Int, Int)
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Type Classes

• use type classes to restrict applicable types in a function with parametric polymorphism
• type classes are like interfaces in Java: if you have implementation of functions +, -, and other
numerical operations, it can be considered a Num

e.g. for sum:

1 Num a => [a] -> a`

• Num: collection of types for which addition, multiplication, and other numerical operations
make sense

• Ord: collection of types for which comparison operations (e.g. <, >, ==) are defined

Type Definitions

Define a new type with the data keyword. Possible values are separated by |

1 -- e.g. our own implementation of Bool
2 data MyBool = MyTrue | My Falsek
3
4 -- e.g. point to store 2D Cartesian coordinates
5 data Point = Pt Float Float

Here we have defined a Point, which can be a Ptwhich also carries two Floats

Typically, you use the same name for the type and data constructor:

1 data Point = Point Float Float

Recursive Data Types

e.g. implementation of linked list: here’s a type List, which can be a ListNode carrying with it an
Int, and another List value. Otherwise, it can be a ListEnd (just a constant)

1 data List = ListNode Int List | ListEnd

• ListNode 20 (ListNode 10 ListEnd): List containing 20 and 10

Tomake this polymorphic with respect to type, introduce type parameter a:

1 data List a = ListNode a (List a) | ListEnd
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Now List is a type constructor, rather than a type. To get a type, you need to provide Listwith the
type to use, e.g. List Int.

• List Char roughly corresponds to Java’s LinkedList<Character>

Defining operations on custom types

• Eq: type class for which equality makes sense
• show: provides string representation
• Show: type class that can be converted to string representation
• to automatically generate default behaviour (i.e. two values are equal when they have the same
structure, and show strings that look like the code you use to write the values):

1 data List a = ListNode a (List a) | ListEnd
2 deriving (Eq, Show)

Binary Tree

1 data Tree a = Node a (Tree a) (Tree a) | Empty
2 deriving Show
3
4 tree :: Tree Int
5 data Tree a = Node a (Tree a) (Tree a) | Empty
6 deriving Show
7
8 -- returns contents of a tree
9 elements :: Tree a -> [a]
10 elements Empty = []
11 elements (Node x l r) = elements l ++ [x] ++ elements r
12
13 -- insert element into binary search tree
14 insert n Empty = (Node n Empty Empty)
15 insert n (Node x l r)
16 | n == x = (Node x l r)
17 | n <= x = (Node x (insert n l) r)
18 | n > x = (Node x l (insert n r))
19
20 -- build a binary search tree from list of values
21 buildtree :: Ord a => [a] -> Tree a
22 buildtree [] = Empty
23 buildtree [x] = insert x Empty
24 buildtree (x:xs) = insert x (buildtree xs)
25
26
27 -- build a BST then return sorted values
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28 treesort :: (Ord a) => [a] -> [a]
29 treesort [] = []
30 treesort x = elements (buildtree x)

List Comprehension

[ expression | generator ]

• generator: pull items from list one at a time to operate on
• expression: what to do with each item of the generator

1 > [x^2 | x<- [1..6]]
2 [1,4,9,16,25,36]
3
4 > [(-x) | x <- [1..6]]
5 [-1,-2,-3,-4,-5,-6]
6
7 > [even x | x <- [1..6]]
8 [False,True,False,True,False,True]

• you can also add filters to restrict which input items should be processed

1 > [x^2 | x <- [1..12], even x]
2 [4, 16, 36, 64, 100, 144]

• multiple generators and filters can be combined:

– each generator introduces a variable that can be used in filters
– each filter cuts down the input items which proceed to subsequent filters/generators
– the futher down a generator is on the list, the faster it will cycle through its values

• nestedgeneratorsand filters areanalogous tonestedfor loopsandif statementsas youwould
use in the procedural approach

• using variables in later generators

1 [ x | x <- [1..4], y <- [x..5], even (x+y) ]

• Pythagorean triples

1 pyth :: [(Integer,Integer,Integer)]
2 pyth = [(a,b,c) | c <- [1..], a <- [1..c], b <- [1..c], a^2 + b^2 == c

^2]

Output:

5



Real World Haskell 2020-07-28

1 Prelude> take 5 pyth
2 [(3,4,5),(4,3,5),(6,8,10),(8,6,10),(5,12,13)]

zip

zip xs ys: returns a list of pairs of elements (x, y)

1 > zip [1,2,3,4] [5,6,7,8]
2 [(1,5), (2,6), (3,7), (4,8)]

• e.g. compute dot product with list comprehension

1 dot xs ys = sum [x*y | (x, y) <- zip xs ys]

Modules

• import using import Module.Name keyword
• define a module using

1 module Module.Name
2 where

Lazy evaluation

You can think of execution in a pure functional language as evaluation by rewriting through substitu-
tion

e.g. with the following definitions:

1 f x y = x + 2*y
2 g x = x^2

You can evaluate the following by applicative order/call by value, rewriting the expression at the
innermost level first:

1 g (f 1 2)
2 = g (1 + 2*2) -- use f's definition
3 = g (1 + 4)
4 = g 5
5 = 5^2 -- use g's definition
6 = 25
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Alternatively, you can evaluate it using normal order/call by name, where you pass an un-evaluated
expression, rewriting the outermoost level first:

1 g (f 1 2)
2 = (f 1 2)^2 -- use g's definition
3 = (1 + 2*2)^2 -- use f's definition
4 = (1 + 4)^2
5 = 5^2
6 = 25

Haskell uses normal order evaluation, unlikemost programming languages. This will always produce
the same value as applicative order evaluation, but sometimes produces a value when applicative
order evaluation would fail to terminate (e.g. asking for a result on an infinite list).

Haskell uses call by need: a function’s argument is evaluated atmost once if needed, otherwise never.
This evaluation isn’t all-or-nothing: Haskell is lazy in that it only evaluates on demand. This allows
Haskell to operate on infinite data structures: data constructors are simply functions that are also
lazy (e.g. cons :)

e.g. take 3 [1..] evaluates to [1,2,3]

Infinite Lists

Here is an efficient Fibonacci implementation that uses a recursive definition of the infinite sequence
as fibs:

1 fibs :: [Integer]
2 fibs = 1 : 1 : zipWith (+) fibs (tail fibs)
3
4 fib n = fibs !! n

Here’s another example for an infinite sequence of powers of 2:

1 powers :: [Integer]
2 powers = 1 : map (*2) powers

What drives evaluation?

1 -- zipWith takes a 2-argument function and 2 lists and applies the
function element-wise across the lists

2 zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
3 zipWith f [] _ = []
4 zipWith f _ [] = []
5 zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
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Let’s consider how Haskell evaluates zipWidth f e1 e2:

• Haskell does a patternmatch on the 3 cases defined: this requires a small amount of evaluation
of e1 and e2 to determine that they are non-empty lists (for the 1st and 2nd cases respectively)

• zipWith causes the spines of e1/e2 to be evaluated until one of the lists is exhasted
• zipWith doesn’t cause any of the list elements to be evaluated

Sieve of Eratosthenes

Algorithm for computing primes:

1. write out list of integers [2..]
2. put the list’s first number p aside
3. remove all multiples of p from the list
4. repeat from step 2

This works with infinite lists, removing an infinite number of multiples. Haskell can evaluate using
it:

1 primes :: [Integer]
2 primes = sieve [2..]
3 where sieve (x:xs) = x : sieve [y | y <- xs, y `mod` x > 0]

Now you can generate lists of primes rapidly:

1 *Main> take 100 primes
2 [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,

3 283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541]

I/O and Monads

• monad: representation or encapsulation of computational action

To preserve purity in computation, Haskell:

• uses typing to distinguish pure functions from effectual functions. While all functions return a
result, some functions alsohaveassociatedactions. The type systemdistinguishesbetween the
two, helping isolate sideeffects andenabling themixingof pure functionswith effectfulmonads
in a principled manner

• actions/things ofmonadic type should be able toworks on lists, actions canbe elements of lists,
etc.
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• Haskell describes recipes for action, which can be combined to create more complex recipes
• when its time for the actions to occur, you call main :: IO ()
• monads allow sequencing, dereferencing, destructive assignment, I/O etc. to be expressed
within a pure functional language. The resulting programs appear imperative but retain the
properties of pure functional programs

• I/O is an example of monadic programming

Input Actions

Input returns a value. Something of type IO a is an input/output actionwhich returns a result of type
a to the caller.

1 getChar :: IO Char

Output Actions

Output actions have type IO (), an instance of a monad.

1 putChar :: Char -> IO ()
2 print :: Show a => a -> IO ()

• >> is used to put actions in a sequence.
• a >> b denotes the combined action of a followed by b

1 (>>) :: IO () -> IO () -> IO ()

• (): theunit type, witha single inhabitant(). Used for I/Oactions that returnnothingof interest.
Used to represent no value.

File I/O

1 type FilePath = String
2 readFile :: FilePath -> IO String
3 writeFile :: FilePath -> String -> IO ()
4 appendFile :: FilePath -> String -> IO ()

Binding and Sequencing

9



Real World Haskell 2020-07-28

1 -- bind: pass result of first action to the next
2 (>>=) :: IO a -> (a -> IO b) -> IO b
3 -- sequence: second action doesn't care about result of the first

action
4 (>>) :: IO a -> IO b -> IO b
5 return :: a -> IO b

Lambda abstraction for f: \x -> f x function that takes an argument x and return f x

>> is defined in terms of >>=:

1 m >> k = m >>= \_ -> k

e.g. read an input file and write to an output file, excluding non-ASCII characters:

1 main
2 = readFile "inp" >>= \s ->
3 writeFile "outp" (filter isAscii s) >>
4 putStr "Filtering successful\n"

Do

Syntactic sugar time: write things under do

1 action1 >>= \x -> action2 using x

becomes:

1 x <- action1
2 action2 using x

1 action1 >> action2

becomes:

1 action1
2 action2

e.g. purely functional code that asks user for input, reads/writes a file, writes to standard out

1 import Data.Char(isAscii)
2
3 main
4 = do
5 putStr "Input file: "
6 ifile <- getLine
7 putStr "Output flie: "
8 ofile <- getLine
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9 s <- readFile ifile
10 writeFile ofile (filter isAscii s)
11 putStrLn "All done"

• Haskell is layout sensitive: youneed to indent actions the sameor else theywon’t be considered
part of the do expression
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