
Real World Haskell 2020-07-28

Real World Haskell

Table of Contents

Getting started

• hugs: interpreter primarily used for teaching
• ghc: Glasgow Haskell Compiler, used for real work
• ghci: REPL for Haskell
• runghc: program for running Haskell programs as scripts without compilation
• Prelude: standard library of useful functions
• Haskell requires type names to start with an uppercase letter, and variable names to start with
a lowercase letter

Types and Functions

• Haskell types are: strong, static, and canbe automatically inferred,making it safer thanpopular
statically typed languages, andmoreexpressive thandynamically typed languages. Muchof the
debugging gets moved to compile time

• strength refers to how permissive a type system is, with a stronger type system accepting fewer
expressions as valid than a weaker one

• strong: type system guarantees a program cannot errors from trying to write expressions that
don’t make sense

• well typed expressions obey the languages type rules
• Haskell doesn’t perform automatic coercion
• static: compiler knows the type of every value and expression at compile time before any code
is executed

– compiler detects when you try to use expressions whose types don’t match
– makes type errors at runtime impossible

• type inference: compiler can automatically deduce the types of most expressions
• type signature: :: Type
• function application is left-associative: a b c d is equivalent to (((a b)c)d)
• side effect: dependency between global state of the system and the behaviour of a function

– invisible inputs to/outputs from functions

• pure function: has no side effects, the default in Haskell
• impure function: has side effects

1

Real World Haskell 2020-07-28

– can be identified by type signature: the result begins with IO

• variables in Haskell allow you to bind a name to an expression. This permits substitution of the
variable for the expression

• lazy evaluation: aka non-strict evaluation. Track unevaluated expressions as thunks anddefer
evaluation until when it is really needed

• parametric polymorphism: most visible polymorphism supported by Haskell, that has influ-
enced the generics and templates of Java/C++. This is the ability to specify behaviour without
knowing the type.

• Haskell doesn’t support subtype polymorphism as it isn’t object oriented, nor does it support
coercion polymorphism as a deliberate design choice to avoid automatic coercion

• in ghci you can list the type of an expression using :t or :type

Comment on Purity

• makes understanding code easier: you know things the function cannot do (e.g. talk to the net-
work), what valid behaviours could be, and it is inherently modular, because each function is
self-contained with a well-defined interface

• pure code makes working with impure code simpler: code that must have side effects can be
separated from code that doesn’t need side effects. Impure code is kept simple, with heavy
lifting in pure code.

• minimises attack surface

Type constructors

[] and (,) are type constructors: they take types as input and build new types from them

String s

String in Haskell is a type synonymwith [Char]

Defining type synonyms

• similar to C’s typedef

1 type Pair = (Int, Int)

2

Real World Haskell 2020-07-28

Type Classes

• use type classes to restrict applicable types in a function with parametric polymorphism
• type classes are like interfaces in Java: if you have implementation of functions +, -, and other
numerical operations, it can be considered a Num

e.g. for sum:

1 Num a => [a] -> a`

• Num: collection of types for which addition, multiplication, and other numerical operations
make sense

• Ord: collection of types for which comparison operations (e.g. <, >, ==) are defined

Type Definitions

Define a new type with the data keyword. Possible values are separated by |

1 -- e.g. our own implementation of Bool
2 data MyBool = MyTrue | My Falsek
3
4 -- e.g. point to store 2D Cartesian coordinates
5 data Point = Pt Float Float

Here we have defined a Point, which can be a Ptwhich also carries two Floats

Typically, you use the same name for the type and data constructor:

1 data Point = Point Float Float

Recursive Data Types

e.g. implementation of linked list: here’s a type List, which can be a ListNode carrying with it an
Int, and another List value. Otherwise, it can be a ListEnd (just a constant)

1 data List = ListNode Int List | ListEnd

• ListNode 20 (ListNode 10 ListEnd): List containing 20 and 10

Tomake this polymorphic with respect to type, introduce type parameter a:

1 data List a = ListNode a (List a) | ListEnd

3

Real World Haskell 2020-07-28

Now List is a type constructor, rather than a type. To get a type, you need to provide Listwith the
type to use, e.g. List Int.

• List Char roughly corresponds to Java’s LinkedList<Character>

Defining operations on custom types

• Eq: type class for which equality makes sense
• show: provides string representation
• Show: type class that can be converted to string representation
• to automatically generate default behaviour (i.e. two values are equal when they have the same
structure, and show strings that look like the code you use to write the values):

1 data List a = ListNode a (List a) | ListEnd
2 deriving (Eq, Show)

Binary Tree

1 data Tree a = Node a (Tree a) (Tree a) | Empty
2 deriving Show
3
4 tree :: Tree Int
5 data Tree a = Node a (Tree a) (Tree a) | Empty
6 deriving Show
7
8 -- returns contents of a tree
9 elements :: Tree a -> [a]
10 elements Empty = []
11 elements (Node x l r) = elements l ++ [x] ++ elements r
12
13 -- insert element into binary search tree
14 insert n Empty = (Node n Empty Empty)
15 insert n (Node x l r)
16 | n == x = (Node x l r)
17 | n <= x = (Node x (insert n l) r)
18 | n > x = (Node x l (insert n r))
19
20 -- build a binary search tree from list of values
21 buildtree :: Ord a => [a] -> Tree a
22 buildtree [] = Empty
23 buildtree [x] = insert x Empty
24 buildtree (x:xs) = insert x (buildtree xs)
25
26
27 -- build a BST then return sorted values

4

Real World Haskell 2020-07-28

28 treesort :: (Ord a) => [a] -> [a]
29 treesort [] = []
30 treesort x = elements (buildtree x)

List Comprehension

[expression | generator]

• generator: pull items from list one at a time to operate on
• expression: what to do with each item of the generator

1 > [x^2 | x<- [1..6]]
2 [1,4,9,16,25,36]
3
4 > [(-x) | x <- [1..6]]
5 [-1,-2,-3,-4,-5,-6]
6
7 > [even x | x <- [1..6]]
8 [False,True,False,True,False,True]

• you can also add filters to restrict which input items should be processed

1 > [x^2 | x <- [1..12], even x]
2 [4, 16, 36, 64, 100, 144]

• multiple generators and filters can be combined:

– each generator introduces a variable that can be used in filters
– each filter cuts down the input items which proceed to subsequent filters/generators
– the futher down a generator is on the list, the faster it will cycle through its values

• nestedgeneratorsand filters areanalogous tonestedfor loopsandif statementsas youwould
use in the procedural approach

• using variables in later generators

1 [x | x <- [1..4], y <- [x..5], even (x+y)]

• Pythagorean triples

1 pyth :: [(Integer,Integer,Integer)]
2 pyth = [(a,b,c) | c <- [1..], a <- [1..c], b <- [1..c], a^2 + b^2 == c

^2]

Output:

5

Real World Haskell 2020-07-28

1 Prelude> take 5 pyth
2 [(3,4,5),(4,3,5),(6,8,10),(8,6,10),(5,12,13)]

zip

zip xs ys: returns a list of pairs of elements (x, y)

1 > zip [1,2,3,4] [5,6,7,8]
2 [(1,5), (2,6), (3,7), (4,8)]

• e.g. compute dot product with list comprehension

1 dot xs ys = sum [x*y | (x, y) <- zip xs ys]

Modules

• import using import Module.Name keyword
• define a module using

1 module Module.Name
2 where

Lazy evaluation

You can think of execution in a pure functional language as evaluation by rewriting through substitu-
tion

e.g. with the following definitions:

1 f x y = x + 2*y
2 g x = x^2

You can evaluate the following by applicative order/call by value, rewriting the expression at the
innermost level first:

1 g (f 1 2)
2 = g (1 + 2*2) -- use f's definition
3 = g (1 + 4)
4 = g 5
5 = 5^2 -- use g's definition
6 = 25

6

Real World Haskell 2020-07-28

Alternatively, you can evaluate it using normal order/call by name, where you pass an un-evaluated
expression, rewriting the outermoost level first:

1 g (f 1 2)
2 = (f 1 2)^2 -- use g's definition
3 = (1 + 2*2)^2 -- use f's definition
4 = (1 + 4)^2
5 = 5^2
6 = 25

Haskell uses normal order evaluation, unlikemost programming languages. This will always produce
the same value as applicative order evaluation, but sometimes produces a value when applicative
order evaluation would fail to terminate (e.g. asking for a result on an infinite list).

Haskell uses call by need: a function’s argument is evaluated atmost once if needed, otherwise never.
This evaluation isn’t all-or-nothing: Haskell is lazy in that it only evaluates on demand. This allows
Haskell to operate on infinite data structures: data constructors are simply functions that are also
lazy (e.g. cons :)

e.g. take 3 [1..] evaluates to [1,2,3]

Infinite Lists

Here is an efficient Fibonacci implementation that uses a recursive definition of the infinite sequence
as fibs:

1 fibs :: [Integer]
2 fibs = 1 : 1 : zipWith (+) fibs (tail fibs)
3
4 fib n = fibs !! n

Here’s another example for an infinite sequence of powers of 2:

1 powers :: [Integer]
2 powers = 1 : map (*2) powers

What drives evaluation?

1 -- zipWith takes a 2-argument function and 2 lists and applies the
function element-wise across the lists

2 zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
3 zipWith f [] _ = []
4 zipWith f _ [] = []
5 zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

7

Real World Haskell 2020-07-28

Let’s consider how Haskell evaluates zipWidth f e1 e2:

• Haskell does a patternmatch on the 3 cases defined: this requires a small amount of evaluation
of e1 and e2 to determine that they are non-empty lists (for the 1st and 2nd cases respectively)

• zipWith causes the spines of e1/e2 to be evaluated until one of the lists is exhasted
• zipWith doesn’t cause any of the list elements to be evaluated

Sieve of Eratosthenes

Algorithm for computing primes:

1. write out list of integers [2..]
2. put the list’s first number p aside
3. remove all multiples of p from the list
4. repeat from step 2

This works with infinite lists, removing an infinite number of multiples. Haskell can evaluate using
it:

1 primes :: [Integer]
2 primes = sieve [2..]
3 where sieve (x:xs) = x : sieve [y | y <- xs, y `mod` x > 0]

Now you can generate lists of primes rapidly:

1 *Main> take 100 primes
2 [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,

3 283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541]

I/O and Monads

• monad: representation or encapsulation of computational action

To preserve purity in computation, Haskell:

• uses typing to distinguish pure functions from effectual functions. While all functions return a
result, some functions alsohaveassociatedactions. The type systemdistinguishesbetween the
two, helping isolate sideeffects andenabling themixingof pure functionswith effectfulmonads
in a principled manner

• actions/things ofmonadic type should be able toworks on lists, actions canbe elements of lists,
etc.

8

Real World Haskell 2020-07-28

• Haskell describes recipes for action, which can be combined to create more complex recipes
• when its time for the actions to occur, you call main :: IO ()
• monads allow sequencing, dereferencing, destructive assignment, I/O etc. to be expressed
within a pure functional language. The resulting programs appear imperative but retain the
properties of pure functional programs

• I/O is an example of monadic programming

Input Actions

Input returns a value. Something of type IO a is an input/output actionwhich returns a result of type
a to the caller.

1 getChar :: IO Char

Output Actions

Output actions have type IO (), an instance of a monad.

1 putChar :: Char -> IO ()
2 print :: Show a => a -> IO ()

• >> is used to put actions in a sequence.
• a >> b denotes the combined action of a followed by b

1 (>>) :: IO () -> IO () -> IO ()

• (): theunit type, witha single inhabitant(). Used for I/Oactions that returnnothingof interest.
Used to represent no value.

File I/O

1 type FilePath = String
2 readFile :: FilePath -> IO String
3 writeFile :: FilePath -> String -> IO ()
4 appendFile :: FilePath -> String -> IO ()

Binding and Sequencing

9

Real World Haskell 2020-07-28

1 -- bind: pass result of first action to the next
2 (>>=) :: IO a -> (a -> IO b) -> IO b
3 -- sequence: second action doesn't care about result of the first

action
4 (>>) :: IO a -> IO b -> IO b
5 return :: a -> IO b

Lambda abstraction for f: \x -> f x function that takes an argument x and return f x

>> is defined in terms of >>=:

1 m >> k = m >>= _ -> k

e.g. read an input file and write to an output file, excluding non-ASCII characters:

1 main
2 = readFile "inp" >>= \s ->
3 writeFile "outp" (filter isAscii s) >>
4 putStr "Filtering successful\n"

Do

Syntactic sugar time: write things under do

1 action1 >>= \x -> action2 using x

becomes:

1 x <- action1
2 action2 using x

1 action1 >> action2

becomes:

1 action1
2 action2

e.g. purely functional code that asks user for input, reads/writes a file, writes to standard out

1 import Data.Char(isAscii)
2
3 main
4 = do
5 putStr "Input file: "
6 ifile <- getLine
7 putStr "Output flie: "
8 ofile <- getLine

10

Real World Haskell 2020-07-28

9 s <- readFile ifile
10 writeFile ofile (filter isAscii s)
11 putStrLn "All done"

• Haskell is layout sensitive: youneed to indent actions the sameor else theywon’t be considered
part of the do expression

11

	Real World Haskell
	Table of Contents
	Getting started
	Types and Functions
	Comment on Purity
	Type constructors
	Strings
	Defining type synonyms
	Type Classes
	Type Definitions
	Recursive Data Types
	Defining operations on custom types

	Binary Tree
	List Comprehension
	zip

	Modules
	Lazy evaluation
	Infinite Lists
	What drives evaluation?
	Sieve of Eratosthenes

	I/O and Monads
	Input Actions
	Output Actions
	File I/O
	Binding and Sequencing
	Do

