
Attacks 2020-07-12 21:51

Software Exploits

Table of Contents

• Buffer Overflow Attacks

– Data execution prevention
– Code Reuse Attack
– Non-control flow diverting attacks

• Format-string attacks
• Dangling Pointers
• Null Pointer Dereference Attacks
• Integer Overflow Attacks
• Command Injection Attack
• Time of Check to Time of Use
• Logic Bomb
• Back Door
• Login spoofing
• Viruses

– Companion virus
– Executable Program Virus
– Memory Resident Virus
– Boot sector viruses
– Device Driver viruses
– Macro Viruses
– Source code viruses
– Spyware

• Rootkit

Buffer Overflow Attacks

C/C++ is used for most systems programs and operating systems, but the compilers don’t check array
bounds.

• gets reads a string of unknown size into a fixed size buffer with no check for overflow, and is
notorious for buffer overflow exploits

1

Attacks 2020-07-12 21:51

• ifgetswasused togetuser input, say, and theuser inputsmorecharacters than thebuffer could
hold, the extra characters would write into the stack, and could overwrite the return address of
a function

• if this was not malicious, it would likely result in an invalid memory address being referenced,
and the process would crash

• shellcode: if this wasmalicious, the attacker couldmake the return address point to a location
inside the buffer, having filled the buffer with machine instructions. This will make the process
execute whatever the attacker wants, and could be used for an exec to launch a shell. The
attacker then has access to the system.

Figure 1: buffer-overflow

• nop sled: if the attacker doesn’t exactly know where the shellcode resides, they can prepend
the shellcode with a sequence of one-byte NO OPERATION instructions that do nothing, such
that execution will eventually reach the real shellcode

– works on both stack and heap

• stack canary: defence against buffer overflow attacks. The compiler inserts code to save a ran-
dom canary value on the stack just below a return address. When returning froma function, the
compiler inserts code to check the value of the canary. If the value has changed, something has
gone wrong.

2

Attacks 2020-07-12 21:51

• any function pointer that is reachable via an overflow is fair game for an attack

Data execution prevention

• data execution prevention: prevent code injection attacks by distinguishing between
executable and non-executable code

• CPUs typically have anNXbit (no execute). In AMD64, this is themost significant bit of the page
table entry. This means you can set the NX bit for a page representing the stack/data, and have
the bit 0 for pages of text.

• W^X: W XOR X: data segment is writable, not executable; text segment is executable, not
writable

Code Reuse Attack

• attacker constructs functionality from existing functions and instructions in binaries/libraries
• return to libc: most C programs are linkedwith the librarylibc, which containssystem, allow-
ing execution of arbitrary commands. The attacker can simply place the command as a string
on the stack, and divert control to the system function via the return address

• return-oriented programming (ROP): attacker returns to any instruction in the text segment,
By locating small sequences of instructions that do something useful and end with a return in-
struction, the attacker can string them together to form a gadget

– gadgets provide a sort of instruction set that can then be used to build arbitrary function-
ality

– automated tools: gadget harvesters, ROP compilers

• address-space layout randomisation: defence against code reuse attacks by randomising the
positions of the initial stack, the heap, and libraries each time a program is run, making it much
harder for the attacker to exploit the system

– often ASLR isn’t random enough: code found at fixed locations, or weak randomisation,
allowing brute force attacks

• memory disclosure: initial attack to leak information about memory layout, to facilitate a sec-
ond attack. Typically only need to determine the address of a single function, as other functions
will be consistently offset from this position

3

Attacks 2020-07-12 21:51

Non-control flow diverting attacks

• data itself can be a target for the attacker: e.g. an authorisation check. A buffer overflow could
overwrite the value of the authorisation variable in the stack, leading to secret information be-
ing leaked to an unauthorised user

Format-string attacks

• printf has amechanism towrite tomemory: the %n specifier in a format string calculates how
many characters should have been output at the place it appears in the string and stores it in
the next argument

1 int main(int argc, char **argv) {
2 int i = 0;
3 printf("Hello %nworld\n", &i);
4 printf("i=%d\n", i);
5 }
6 // outputs:
7 // Hello World!
8 // 6

• if the next argument is omitted, it will be assumed that the next value on the stack is the next
parameter

• in a lazy implementation of printfwhere a format string is not specified but the parameter is
dependent on user input, an attacker can place a cleverly crafted format string to modify the
return value and get the program to execute arbitrary code

Dangling Pointers

• malloc is used to allocate memory on the heap, which is then freeed after use
• dangling pointer: program accidentally uses memory that has already been freed
• after you free, the pointer still points to the same address
• the attacker can perform heap feng shui to place a specific heap object in memory such that
the dangling pointer is pointing to interesting information - allowing information leakage

Null Pointer Dereference Attacks

• in Linux, the kernel is mapped into every process’ address space
• a buggy kernel may dereference a NULL pointer, taking down the entire system
• if the attacker can trigger this from a user process, they can take the system down at will

4

Attacks 2020-07-12 21:51

• however the crash happens before there is no code mapped at page 0: using mmap, the user
process can ask the kernel to map memory at address 0, writing shellcode in this page. The
attacker then triggers thenull pointer dereference, causing shellcode tobeexecutedwith kernel
privileges

• modern kernels prevent this
• note that similar bugsmay allow attacker to inject their own pointer into the kernel and have it
dereferenced

Integer Overflow Attacks

• C programs overflow silently: if undetected this can be turned into an attack
• e.g. a graphics program accepting command line arguments could be passed two very large
values for image height and width, resulting in an overflow. This could produce a malloc of a
small buffer, opening the door to a buffer overflow attack

Command Injection Attack

• get target program to execute commands without realising it is doing so

1 printf("enter destination: ");
2 gets(dst);
3 strcat(cmd, dst);
4 system(cmd);

• if the user inputs “xyz; rm -rf /” they can wipe all files on the system

Time of Check to Time of Use

• exploits race conditions

1 int fd;
2 if (access("./my_document", W_OK) != 0) {
3 exit(1);
4 }
5
6 fd = open("./my_document", O_WRONLY);
7 write(fd, user_input, sizeof(user_input));

• e.g. use of access system call: just after the access check, the attacker creates a symlink with
the same file name to the password file. open ends up opening the symlink, and the write is
applied to the password file

5

Attacks 2020-07-12 21:51

• issue: access syscall isn’t safe because its vulnerable to these race attacks
• instead open the file first, then check permissions using fstat

– the file descriptor cannot be changed between fstat and write

• designing a robust API for operating systems is hard

Insider Attacks

• executed by developers of the software, with specialised knowledge/access

Logic Bomb

• have some negative effect under some condition, say if employee is fired e.g. clear disk, erase
files

• e.g. Spafford 1989: logic bomb checked the payroll. If the personnel number of the programmer
didn’t appear in it for 2 consecutive payroll periods it went off

Back Door

• code inserted into the system by system programmer to bypass normal check
• code reviews/open source are a good way to prevent backdoors

Login spoofing

• collect usernames/passwords by providing fake login screen
• defend with a key combination user programs cannot catch: this is why Windows uses CTRL-
ALT-DEL to start login screen

Malware

• malicious software

• trojan horse: user voluntarily downloads and installs a useful program that also installs mal-
ware

6

Attacks 2020-07-12 21:51

Viruses

• virus: program that can reproduce itself by attaching its code to another program

– can do other things, other than reproducing itself
– worm: similar to virus, but self-replicating
– typically written in C/assembler to be small and efficient

Companion virus

• doesn’t infect a program, but gets to run when the program is supposed to run
• e.g. when a user types prog in the command line, MS-DOS first looks for prog.com. If this isn’t
found, it looks for prog.exe. .com files became very rare: attacker can release a virus prog.
com, such that it will executewhenever the user tries to executeprog, andwill typically dowhat
it needs to, then executes prog.exe such that the user is none the wiser

• similarly,WindowsDesktop shortcuts are symlinks: a virus can change the target of the shortcut
to make it point to the virus

Executable Program Virus

• virus that infects executable program
• overwriting virus: simple version that walks the tree and overwrite any binary with a copy of
the virus

– could be written in assembly-code for MS-DOS in 44 bytes when assembled
– the same logic can also be used by antivirus programs to hunt down infected programs in
order to remove the virus

– easy to detect

• parasitic virus: attach themselves to the front, back, or throughout an executable program

– attaching to the front is hard because the virus will have to relocate the program it has
moved, so attaching to the end is more common

• cavity virus: executable program formats (e.g. .exe) allow a program to have multiple text
and data segments. The loader assembles them and relocates them on the fly. In Windows, all
segments aremultiples of 512 bytes. Segments that aren’t full get filled out with 0s: viruses can
use this to try to hide in the holes. The virusmay be able to fit in the programwith no change in
file size

7

Attacks 2020-07-12 21:51

Figure 2: parasitic-virus

Memory Resident Virus

• stays in RAM all the time, hiding at the very top of memory or down among interrupt vectors
• typically will capture a trap/interrupt vector by copying the contents to a scratch variable and
putting its own address there, directing he trap/interrupt to it

• this allows the virus to run in kernel mode on every system call,
• e.g. when an exec system call is made, the virus can infect the binary
• doesn’t produce lots of disk activity
• potential for spying on data

Boot sector viruses

• copies true boot sector to safe place on disk, allowing it to boot when the operating system is
finished

• when the computer boots, the virus copies itself to RAM: at this point the machine is in kernel
mode with MMU off, no operating system, no antivirus: the virus can do whatever it wants

Device Driver viruses

• make the OS load the virus officially, by infecting a device driver

8

Attacks 2020-07-12 21:51

• device drivers also run in kernel mode

Macro Viruses

• e.g. Word/Excel macros with arbitrary programs

Source code viruses

• virus looks for source code, parses it, and adds:

1 #include <virus.h>
2
3 run_virus()

Spyware

• hides, collects data about the user, communicates this back to the distant master, and tries to
survive attempts to remove it

• additionally may change settings
• used for marketing, surveillance, creating zombie for use in a botnet
• spreads as Trojans, drive-by-downloads, infected toolbars

Rootkit

• rootkit: set of program/files that attempts to conceal its existence, even in the face of deter-
mined efforts by the owner of the machine to locate/remove it. Usually contains malware as
well

9

Attacks 2020-07-12 21:51

Figure 3: rootkit

• firmware rootkit: could hide by reflashing BIOS. Not observed in the wild

• hypervisor rootkit: run entire OS and all applications in a VM under its control

– blue pill: proof-of-concept 2006
– modifies boot sequence to execute hypervisor on bare hardware, then starts OS in VM

• kernel rootkit: most common; infects OS and hides in it as a device driver/loadable module

• library rootkit: hides in system library e.g. libc, allowing malware to inspect arguments/re-
turn values of system calls

• application roootkit: hidden inside large application, typically one that creates many files
while running. The new files can be used to hide things, and noone notices that they exit

• hard to detect when you cannot trust hardware, OS, libraries, applications

– use external trustedmedium (boot disk)
– compare software hashes

• Sony rootkit: 2005, Sony released audio CDs including a rootkit. autorun.inf silently in-
stalled a 12-MB rootkit, with the goal of stopping music piracy. The software would display a
license agreement, then check if any copy programs were running, then would prevent access
unless the programs were stopped. The rootkit was difficult to uninstall

10

	Software Exploits
	Table of Contents
	Buffer Overflow Attacks
	Data execution prevention
	Code Reuse Attack
	Non-control flow diverting attacks

	Format-string attacks
	Dangling Pointers
	Null Pointer Dereference Attacks
	Integer Overflow Attacks
	Command Injection Attack
	Time of Check to Time of Use

	Insider Attacks
	Logic Bomb
	Back Door
	Login spoofing

	Malware
	Viruses
	Companion virus
	Executable Program Virus
	Memory Resident Virus
	Boot sector viruses
	Device Driver viruses
	Macro Viruses
	Source code viruses
	Spyware

	Rootkit

