
Unix, Linux, Android 2020-07-07 22:51

Unix, Linux, Android

Table of Contents

• History

– MULTICS
– PDP-11 UNIX
– Portable UNIX
– Berkeley UNIX
– POSIX
– MINIX
– Linux

• Linux Overview

– Linux Goals
– Interfaces

• Kernel Structure

– I/O Component
– Interdependence
– System call interface

• Processes

– Signals
– Implementation
– Process Descriptor
– Executing ls
– Kernel Threads and clone

• Scheduling

– Linux O(1) Scheduler
– Completely Fair Scheduler (CFS)

• Boot Process

– Dynamic Loading
– init

• Memory Management

1



Unix, Linux, Android 2020-07-07 22:51

– System Calls
– Implementation
– Physical memory
– Paging Scheme
– Memory-Allocation
– Representation of Virtual Address Space
– Paging
– Page Frame Reclaiming Algorithm

History

MULTICS

• 1940s-1950s: book time on a computer
• 1960s: batch systems where you leave your punched cards at the machine room

– long delay between submitting and getting the output
– debugging immensely difficult

• timesharing invented at Dartmouth College and MIT
• MULTICS: Multiplexed Information and Computing Service: developed by Bell Labs and GE,
before Bell Labs pulled out

• Ken Thompson: Bell Labs researcher writes stripped-down MULTICS in assembly on a PDP-7
• Brian Kernighan referred to it as UNICS (Uniplexed Information and Computing Service,
which eventually became UNIX

PDP-11 UNIX

• UNIX was moved to PDP-11, which was a powerful machine and large memory, with memory-
protection hardware, allowing multi-user support

• Thompson rewrote UNIX in high-level language he designed, B. But it lacked structuresmaking
it insufficient.

• Dennis Ritchie designed successor C and a compiler
• Thompson and Ritchie then rewrite UNIX in C, publishing landmark paper The UNIX Time-
Sharing System in 1974

• Bell Labs, owned by AT&T, as a regulatedmonopoly was not allowed to be in the computer busi-
ness, so licensed UNIX to universities for a modest fee. At the time, most universities had PDP-
11s, and the OS that came with themwas terrible, so UNIX came in at the right time.

2

https://people.eecs.berkeley.edu/~brewer/cs262/unix.pdf
https://people.eecs.berkeley.edu/~brewer/cs262/unix.pdf


Unix, Linux, Android 2020-07-07 22:51

Portable UNIX

• porting UNIX to a new machine was made much simpler once it was written in C. The process
involves:

– writing a C compiler for the newmachine
– writing device drivers for the newmachine’s I/O devices
– small amount of machine-dependent code for interrupt handlers/memory management
in assembly

• processing of porting to an Interdata machine revealed lots of assumptions implicitly made by
UNIX about integers being 16 bits, pointers, being 16 bits, etc. UNIX had to be cleaned up to
make it portable.

• a portable C compiler was implemented, allowing easymodification for anymachinewithmod-
erate effort

• AT&T was broken up in 1984 by the US government, and accordingly established a computer
subsidiary, releasing commercial UNIX product (System III/V)

Berkeley UNIX

• source code for UNIX was available, so Berkeley heavily modified it, with funding from ARPA
• 4BSD (Fourth Berkeley software distribution) introducedmany improvements

– virtual memory and paging
– longer file names
– reimplemented file systemwith improved performance
– increased signal handling reliability
– introduced networking causing TCP/IP protocol stack to becomede facto standard inUNIX
world

• added a number of utility programs: vi, csh, Pascal and Lisp compilers, …
• some vendors subsequently based their UNIX off Berkely UNIX rather than System V

POSIX

IEEE 1003.1-2017

• late 1980s: 4.3BSD and System V Release 3 were both in widespread use and were somewhat
incompatible, with each vendor additionally complicatingmatterswith their ownnon-standard
enhancements

3

https://ieeexplore.ieee.org/document/8277153


Unix, Linux, Android 2020-07-07 22:51

• prevented commercial success as software vendors could not packageUNIX programsandguar-
antee that they would run on any system, as was the case with MS-DOS

• attemptsweremade tostandardise, e.g. byAT&T issuing theSVID (SystemV InterfaceDefinition),
however this was only relevant to System V vendors and ignored by BSD

• IEEE Standards Board came together with industry, academia, and government to produce
POSIX, a Portable Operating System, defined in standard 1003.1

• 1003.1 defines a set of library procedures that every conformant UNIX systemmust supply. Most
procedures invoke a system call (e.g. open, read, fork), but some can be implemented out-
side the kernel

• as a result a vendor writing a program using only procedures defined by 1003.1 knows that this
programwill run on every conformant UNIX system

• approach taken by IEEEwas unusual in that it took the intersection of System V and BSD, rather
than the union, such that 1003.1 looks lie a common ancestor of both OSs

• related documents standardise threads, utilities, networking, …
• C has also been standardised by ISO/ANSI

MINIX

• modern UNIX is large and complicated, the antithesis of the original conception of UNIX
• 1987: MINIX was produced as a UNIX-like system that was small enough to understand, with
11,800 lines of C and 800 lines of assembly

• MINIXusedmicrokernel design, providingminimal functionality in thekernel so that it is reliable
and efficient. Memory management and file system become user processes, while the kernel
handles message passing between processes and not much else

– Kernel: 1600 lines of code + 800 lines of assembler
– I/O device drivers: 2900 lines of C, also in kernel
– File system: 5100 lines of C
– Memory manager: 2200 lines of C

• microkernels vs monolithic:

– the former is easier to understand andmaintain, with a highly modular structure
– highly reliable: a crashof ausermodeprocessdoesmuch lessdamage thanakernel-mode
crash

– lower performance due to extra switches between user/kernel mode

• 2004: direction of MINIX development changed to focus on building an extremely reliable and
dependent system that could automatically repair faults

– all device drivers were moved to user space, each running as a separate process

4



Unix, Linux, Android 2020-07-07 22:51

– kernel was under 4000 lines of code

• has been ported to ARM, so it is available for embedded systems

Linux

• many features were requested for MINIX but these were often denied due to the goal of keeping
the system small

• 1991: Linus Torvalds wrote Linux as a UNIX clone, intending for it to be a full production system

– monolithic, with the entire OS in the kernel
– initially 9,300 lines of C + 950 lines of assembly

• 1994: v1.0, 165,000 lines of code
• 1996: v2.0, 470,000 lines of C, 8000 lines of assembly
• 2013: ~ 16 million lines of code
• version A.B.C.D:

– A: kernel version
– B: major version
– C: minor revision, e.g. support for new drivers
– D: minor bug fixes and security patches

• issuedunderGPL (GNUPublic License), permittingyou touse, copy,modify, and redistribute the
source and binary code freely. All derivatives of the Linux kernel may not be sold/redistributed
in binary form only, they must be shipped with source code

• 1992: Berkeley terminated BSD development, releasing 4.4BSD

– FreeBSD was based off this
– Berkeley issued software under an open source license
– AT&T subsidiary sued Berkeley, keeping FreeBSD off the market for long enough for Linux
to become well established

– had this not happened, Linux would have an immature OS competing with mature and
stable system

Linux Overview

Linux Goals

• UNIX: interactive system for multiple processes and multiple users, designed by programmers
for programmers

5



Unix, Linux, Android 2020-07-07 22:51

Goals

• simplicity
• elegance
• consistency
• power
• flexibility
• avoid useless redundancy

Examples

• files should just be a collection of bytes, not with different classes
• principle of least surprise: e.g. ls *A and rm *A should be predictable and
• small number of basic elements should be able to be combined infinite ways as needed

Interfaces

• operating system runs on bare hardware, controling the hardware and provides system calls
interface to programs

• system calls allow users to create andmanage processes, files, resources
• programsmake system calls by putting arguments in registers and issuing trap instructions. As
there is noway towrite a trap instruction in C, a standard library is providedwith one procedure
per system call

• standard library is written in assembly but can be called from C
• POSIX specifies the library interface, not the system call interface
• Linux also supplies standard programs, some of which are specified by 1003.2, which get in-
voked by the user

6



Unix, Linux, Android 2020-07-07 22:51

Figure 1: linux-interfaces

• GUIs are supported by X windowing system (X11/X), defining communication and display proto-
cols for windowmanipulation on bitmap displays

• X server: controls devices and redirects I/O
• GUI environment built on top of low-level library xlibwhich contains functionality to interact
with the X server

– graphical interface extends functionality of X11 by enriching window view: e.g. buttons,
menus, …

– xterm: terminal emulator program, providing basic command-line interface to OS

7



Unix, Linux, Android 2020-07-07 22:51

Kernel Structure

Figure 2: linux-kernel

• interrupt handlers: primary way of interacting with devices
• dispatching occurs as the result of an interrupt: code stops running process, saves its state and
starts the appropriate driver

– written in assembler

I/O Component

• I/O component: responsible for interacting with devices, network, storage I/O operations
• I/O operations are integrated under a Virtual File System (VFS) layer
• at the low-level all I/O operations pass through a device driver
• drivers are either character/block-device, depending onwhether they are randomaccess or not,
and network devices, while a form of character devices are sufficiently different to consider
them a different category

8



Unix, Linux, Android 2020-07-07 22:51

• character devices used in 2 ways:

– every keystroke: e.g. vim
– line oriented: e.g. bash. The character stream is passed through a line discipline

• network devices:

– above network drivers is full functionality of hardware router
– above routing code is protocol stack (including IP/TCP)
– above this is the socket interface, allowing programs to create sockets

• block devices:

– I/O scheduler orders/issues disk-operation requests per some system policy
– file system: Linux hasmultiple file systems concurrently, so to abstract away architectural
differences, a generic block-device layer is used by all file systems

Interdependence

• 3 components are interdependent
• e.g. page caches may be used to hide latencies of accessing files: block device dependent on
memory manager

• e.g. virtual memory relies on swap area: memory manager dependent on I/O

System call interface

• all system calls come here, causing a trap which switches execution from user mode into pro-
tected kernel mode, passing control to one of the kernel components

Processes

• each process runs a single program, starting with 1 thread of control
• process group: ancestors, siblings, descendants
• daemon: background process e.g. cron daemon for scheduling jobs
• created by fork
• pipe: channel for two processes to communicate, one process can write a stream of bytes for
the other to read

– when a process tries to read an empty pipe, the process is blocked until data is available

• zombie state: process exits, and parent has not waited for it. When parent calls wait for it, the
process terminates

9



Unix, Linux, Android 2020-07-07 22:51

Signals

• signal: software interrupt for one process to send signal to another process
• processes catching signals must specify signal-handling procedure
• when a signal arries, control abruptly switches to the handler. After finishing, control returns to
the previous location

• processes can only send signals to members of its process group
• sigaction: syscall for a process to announce signal-handler for a particular signal
• kill: syscall for a process to signal another related process

– uncaught signals kill the recipient

• alarm: syscall for a process to be interrupted after a specific time interval with SIGALRM
• pause: suspends process until next signal arrives

Implementation

• every process has a user part running the user program
• whena threadmakes a syscall it traps to kernelmodeandbegins running in kernel context, with
a different memory map, and full access to machine resources

• this is still the same thread, but with more power and its own kernel mode stack and program
counter

• kernel represents any execution context (thread, process) as a task via task_struct,

– multithreadd process has one task structure for each user level thread

• kernel is multithreaded, having kernel-level threads

– executing kernel code
– not associated with any user processes

• task_structs are in memory for each process at all times, stored as a doubly linked list
• there is also a hashmap fromPID to the address of the task structure for quick lookup. This uses
chaining in case of collisions.

Process Descriptor

• scheduling parameters: process priority, CPU time used, time sleeping
• memory image: pointers to text, data, stack, page tables
• signals: mask indicate which signals are caught/ignored/delivered
• machine registers: when a trap occurs, machine registers are stored ere

10



Unix, Linux, Android 2020-07-07 22:51

• syscall state: info about the current system call
• file descriptor table: table mapping between file descriptor and file’s i-node
• accounting: keep track of CPU time used by the process
• kernel stack: fixed stack, for use by kernel part of process
• miscellaneous: process state, event being waited for, PID, parent PID, UID, GUID

Executing ls

Figure 3: executing-ls

Kernel Threads and clone

• kernel threads in Linux differ from the standard UNIX implementation
• in UNIX, processes are resource containers, and threads units of execution. Processes contain
1+ threads, sharing address space, open files, signal handlers, alarms, …

11



Unix, Linux, Android 2020-07-07 22:51

• clone: introduced in Linux in 2000, blurring the distinction between threads and processes,
allowing parameters to be specified as process specific or thread specific

1 pid = clone(function, stack_ptr, sharing_flags, arg);

Whether a clone call creates a new thread in the current process or in a new process is dependent on
sharing_flags, which is a bitmap allowing fine-grained control over what gets shared.

Figure 4: sharing-flag-bitmap

• divergence from UNIX, meaning Linux code using clone is no longer portable to UNIX
• Linux stores in task_struct both the process identifier PID and task identifier TID
• when clone creates a new task sharing nothing with the creator, and PID is set to a new value
• otherwise clone creates a task receives a new TID but inherits the PID

Scheduling

• As Linux threads are kernel threads, scheduling is based on threads, not processes
• runnable tasks are stored in the runqueue, associated with each CPU
• tasks which are not runnable are stored in thewaitqueue
• 140 priority values:

– 0: highest priority
– 139: lowest priority

• 3 classes of threads:

– real-timeFIFO: highest priority 0-99, notpreemptable exceptbyanewly readied real-time
FIFO thread with higher priority

– real-time round robin: highest priority 0-99, preemptable by the clock, having an associ-
ated time quantum

– timesharing: lower priority 100-139, conventional threads

12



Unix, Linux, Android 2020-07-07 22:51

• NB these are not actually real-time threads, in terms of a deadline guarantee. The naming is for
consistency with standards

• nice(value): syscall to adjust static priority of a thread, where value ranges from -20 to +19

Linux O(1) Scheduler

• historically popular scheduler, but the heuristics were complex and imperfect, producing poor
performance for interactive tasks

• constant time to select/enqueue tasks
• the runqueue uses two arrays, active and expired, storing the heads of a linked list, each corre-
sponding to 1 of 140 priority levels

• scheduler selects task from highest-priority list in active array
• after the task’s quantum has expired, it is moved to the expired list, possibly with a different
priority level

• a task that blocks is placedon thewaitqueueuntil it is ready again, atwhichpoint it is enqueued
on the active array

• when there are nomore tasks in the active array, the pointers are swapped tomake the expired
array the active array

• higher priority levels are assigned higher quanta to get processes out of the kernel quickly
• interactivity heuristics: dynamic priority is continuously recalculated to reward interactive
threads and punish CPU-hogging threads (-5 to +5 penalty)

Completely Fair Scheduler (CFS)

• uses a red-black tree as the runqueue
• tasks are ordered based on amount of CPU time they have spent, vruntime, measured in
nanoseconds

• left children have had less time on CPU and will be scheduled sooner than right children
• schedule the task which has had the least CPU time (typically left-most node)
• CFS periodically increments vruntime of the task, with the effective rate adjusted according
to the task’s priority: low priority tasks have time pass more quickly. This avoids maintaining
separate runqueues for different priorities

• selection of a node: constant time 𝑂(1)
• insertion of a node: 𝑂(log 𝑛)

13



Unix, Linux, Android 2020-07-07 22:51

Figure 5: linux-scheduling

Boot Process

• BIOS performs Power-On-Self-Test (POST) and initial device discovery and initialisation
• Master Boot Record first sector of the boot disk, is read into a fixed memory location and exe-
cuted

• execution of MBR program loads a standalone boot program from the boot device
• boot is then run

– copies itself to a fixed high memory address, freeing lowmemory for the OS
– reads root directory of the boot device
– reads in OS kernel and jumps to it. Kernel is running

• kernel start-up code is written in assembly, so is highly machine dependent

14

https://en.m.wikipedia.org/wiki/Master_boot_record


Unix, Linux, Android 2020-07-07 22:51

– setting up kernel stack
– identify CPU
– calculate RAM present
– disable interrupts
– enable MMU
– call C-language main procedure to start main part of the OS

• kernel data structures are allocated: page cache, page tables
• autoconfiguration: probe for present devices and add them to a table

– device drivers can be loaded dynamically

• set up process 0 (idle process), set up its stack, and run it

– initialisation: e.g. program real-time clock
– mount root file system
– create init (process 1)
– create page daemon (process 2)

• init checks if it is single/multiuser:

– single: fork a process executing the shell, and wait for it to exit
– multi:

* fork a process that executes system initialisation shell script /etc/rc,

* read /etc/ttys to list terminals and their properties

* fork a copy of itself for each terminal, then execute getty

• if someone tries to login, getty executes /bin/login, which requests credentials
• if authenticated, login replaces itself with the shell

15



Unix, Linux, Android 2020-07-07 22:51

Figure 6: linux-booting

• terminal 0: getty is waiting for input
• terminal 1: user has typed login name, so getty has overwritten itself with login
• terminal 2: successful login has occurred, sologinhas replaced itselfwith/bin/sh, whichhas
printed the prompt. The user has typed cp f1 f2, causing the shell to fork off a child process
executing cp. The shell is blocked, waiting for the child to terminate.

Dynamic Loading

• traditional UNIX: static linking of drivers
• dynamic loading allows you to ship a single binary for multiple configurations, with the system
automatically loading the drivers it needs, possibly obtaining them over the network

• downside: this creates security vulnerabilities

init

Wiki: Init

16

https://en.m.wikipedia.org/wiki/Init


Unix, Linux, Android 2020-07-07 22:51

Memory Management

• each process has an address space with three logical segments: text, data, stack
• text: machine instructions that form the program’s executable code, read only
• data: variables, strings, arrays. Two parts: initialised and uninitialised data

– initialised data: variables and compiler constants that have an initial value when the pro-
gram starts. Similar to program text, bit patterns produced by the compiler

– Block Started by Symbol (BSS): uninitialised data
– data segment can be increased in size by system call brk

* heavily used by malloc

* heap is dynamically allocatedmemory area

• stack: starts at/near top of virtual address space and grows downward

– programs don’t manage the size of the stack explicitly
– if the stack grows below the bottomof the stack segment, a hardware fault occurs and the
OS lowers the bottom of the stack segment by 1 page

– when a program starts it contains environment variables and command line arguments

• shared text segments: allows two processes running the same program can share the same
piece of text in physical memory

• some computer hardware allows separate address spaces to be used for text (in one) and data
+ stack (in the other), doubling the available address space

• memory-mapped files: ability to map a file onto a portion of a process’ address space so that
it can be read/written as if a byte array, making random access much easier

– shared libraries are accessed bymapping them in this way
– two or more files canmap in the same file at the same time

17



Unix, Linux, Android 2020-07-07 22:51

Figure 7: virtual-address-space-linux-memmgmt

Figure 8:mapped-file-linux

18



Unix, Linux, Android 2020-07-07 22:51

System Calls

• POSIX doesn’t specify system calls for memory management as they were considered too sys-
tem dependent. Instead programs need to use malloc, defined in ANSI C.

• most Linux systems have system calls for managing memory:

– brk: change data segment to new address
– mmap: map a file in

Implementation

Duke: linux memory management

• each process on a 32-bit machine has 2 segments of the address space: user and kernel.
• 3GB: private user segment individual to a process, including text, data, and stack
• 1GB: every process maps the same kernel segment into its address space, storing a small stack,
kernel data structures, and mappings to directly access physical memory. This eliminates the
need for address translation.

• the kernel segment is only accessible in kernel mode. If an attempt to access an address over
(and including) 0xC00000000, this will produce a fault

19

https://www2.cs.duke.edu/courses/spring04/cps210/projects/mmlinux.html


Unix, Linux, Android 2020-07-07 22:51

Figure 9: virtual-address-space-linux-user-kernel

• 64-bit x86machines: only use 48 bits for addressing, for a theoretical limit of 256TB of address-
able memory

– Linux divides this between kernel and user space, of 128TB each

• address space gets created when a process is created, and is overwritten on an exec

20



Unix, Linux, Android 2020-07-07 22:51

Physical memory

• Linux uses nodes to allow it to support Non-Uniform Memory Access (NUMA), where access
time for different memory locations may vary. Physical memory is partitioned into nodes.

• in the case of UniformMemory Access, physical memory is represented under a single node

For each node, Linux distinguishes between zones of memory, resulting from differences idiosyn-
cracices of hardware which require them to be handled differently. Memory allocation can then be
performed for each zone separately.

• pinned: memory that doesn’t get pages out
• the kernel andmemorymap are pinned, while the rest of memory is divided into page frames
• a page frame can be a page for: (or else on the free list)

– text
– data
– stack
– page-table

• memorymap: mapmaintained by the kernel representing the usage of physical memory

– mem_map: an array of page descriptors (page) for each physical page frame in the system

• zone descriptor: one for each zone. It stores:

– memory utilisation
– array of free areas, where the 𝑖th element identifies the head of a list of page descriptors
of blocks of 2𝑖 free pages (used in the buddy scheme)

• page descriptor page: contains pointer to address space that it belongs to

– if free, it has an additional pair of pointers that allow it to form a doublyy linked list with
other free page frames

21



Unix, Linux, Android 2020-07-07 22:51

Figure 10: linux-memory-representation

Paging Scheme

• Linux uses a 4-level paging scheme for efficient paging
• virtual address is broken into 5 fields, each used to index the appropriate page of the table

22



Unix, Linux, Android 2020-07-07 22:51

Figure 11: linux-page-table

Memory-Allocation

• page allocator: allocates new page frames of physical memory using buddy algorithm

– request for memory (in number of pages) is rounded up to the next power of 2
– chunk of memory is repeatedly split until the chunk size matches this power of 2, which
can then be allocated

• the array of free areas in the zone descriptor is used to store lists of blocks of size 2𝑖, allowing
you to quickly locate such a block by indexing the array

• this results in a lot of internal fragmentation (e.g. 65 page chunk requested would yield a 128-
page chunk)

• slab allocator: second memory allocation which takes chunks from buddy algorihtm and
carves them into smaller slabs for separate management

– slabsmaintain object cacheswhich can be used for storing objects frequently created/de-
stroyed by the kernel

23



Unix, Linux, Android 2020-07-07 22:51

Representation of Virtual Address Space

The virtual address space can be broken into areas that are runs of consecutive pages sharing protec-
tion and paging properties, e.g. text segment, mapped files

• vm_area_struct: describes an area, including:

– protection mode (read/write),
– pinned/pageable,
– growth direction (up/down),
– private/shared between processes,
– whether it has backing storage on disk: e.g. text segment: uses executable binary as back-
ing storage,memory-mapped file: usesdisk file asbacking storage. The stackdoesn’t have
backing storage assigned until they need to be paged out

• mm_struct: top-level memory descriptor, with information about all virtual-memory areas in
an address space, information about different segments, users sharing the address space

There are 2 ways to access of an area of an address space via this top-level memory descriptor:

• linked-list: useful when all areas need to be accessed, or the kernel is trying to find a virtual
memory region of a specific size to allocate

• red-black tree: gives fast lookup when a specific virtual memory needs to be accessed

Paging

• early UNIX used swapper process to move entire process betweenmemory and disk
• Linux: demand-paged system, no prepaging, no working set
• paging is implemented by both kernel and page daemon (process 2), which runs periodically,
checking if there are sufficient free memory pages, and if not, it starts to free some

• pages with backing storage are paged to their files on disk
• pages without backing storage are paged to the swap area (either paging partition or fixed-
length paging file)

• paging to a separation partition is more efficient:

– nomapping between file blocks/disk blocks is needed
– physical writes can be of any size, not just file block size
– page is always written contiguously to disk

24



Unix, Linux, Android 2020-07-07 22:51

Page Frame Reclaiming Algorithm

• idea: keep some pages free so that they can be claimed as needed

– requires continual replenishment of the pool

• page types

– unreclaimable: may not be paged out, e.g. kernel mode stacks
– swappable: must be written to the swap area before the page can be reclaimed
– syncable: must be written back to the disk if dirty
– discardable: can be immediately reclaimed

• page daemon kswapd is started by init at boot for each node
• each time it awakens, kswapd checks if there are enough free pages available. If free pages falls
below a threshold, it initiates PFRA

• for each run, only a target number of pages is reclaimed, typically a maximum of 32, to control
I/O pressure

• approach: reclaim easy pages, then harder ones

– discardable and unreferenced pages can be reclaimed immediately by moving to the
zone’s free list

– pages with a backing store that haven’t been referenced recently are next
– then come shared pages that no user seems to be using much
– pages that are invalid, absent frommemory, shared, locked, or being used for Direct Mem-
ory Access are skipped

• uses a clock-like algorithmwithin a category to select old pages for eviction
• pages get categorised by two flags: active/inactive and referenced/not referenced

25



Unix, Linux, Android 2020-07-07 22:51

Figure 12: page-states-linux

• when PFRA first scans pages, it clears the reference bits
• on the next scan of pages, if the page has been referenced it is advanced to another state where
it is less likely to be reclaimed

• pages on the inactive list which have not been referenced since last inspected are the best evic-
tion candidates

• pdflush: a set of background daemons that wake periodically to write very old dirty pages
back to disk

– can also be explicitly awakened when the available memory falls below a threshold to
write dirty pages from the page cache back to disk

26


	Unix, Linux, Android
	Table of Contents
	History
	MULTICS
	PDP-11 UNIX
	Portable UNIX
	Berkeley UNIX
	POSIX
	MINIX
	Linux

	Linux Overview
	Linux Goals
	Interfaces

	Kernel Structure
	I/O Component
	Interdependence
	System call interface

	Processes
	Signals
	Implementation
	Process Descriptor
	Executing ls
	Kernel Threads and clone

	Scheduling
	Linux O(1) Scheduler
	Completely Fair Scheduler (CFS)

	Boot Process
	Dynamic Loading
	init

	Memory Management
	System Calls
	Implementation
	Physical memory
	Paging Scheme
	Memory-Allocation
	Representation of Virtual Address Space
	Paging
	Page Frame Reclaiming Algorithm



