
Greedy Algorithms 2020-04-01 11:00

Greedy Algorithms

Table of Contents

• Overview

• Minimum Spanning Tree Problem

• Prim’s Algorithm

• Dijkstra’s Algorithm

• Levitin Ch 9

Overview

• change-making problem: give change for a specific amount 𝑛 with the least number of coins
of the denominations 𝑑1 > ... > 𝑑𝑚

– greedy approach: use largest denomination that is less than 𝑛, and reduce remainder. Re-
peat until the total of the change is equal to the change required.

• greedy technique: suggests constructing solution through sequence of steps, each expanding
partial solution, until a complete solution is reached

– for each step, the choice mademust be:

* feasible, i.e. satisfies problem constraints

* locally optimal

* irrevocable: cannot be changed on subsequent steps

• in some instances greedy technique does provide globally optimum solution

– minimum spanning tree problem: Prim’s, Kruskal’s algorithms

• often greedy technique will not yield optimum solution, but may still be useful to produce ap-
proximate solution

• Dijkstra’s algorithm: shortest-path in a weighted graph
• Huffman trees: data compression method
• greedy algorithms are typically intuitive and simple
• often difficult to prove they are optimal (if they are), approaches include:

– mathematical induction, or
– show that on each step greedy approach does at least aswell as any other algorithm could
– show optimal solution (rather than optimal efficiency)

1

Greedy Algorithms 2020-04-01 11:00

Minimum Spanning Tree Problem

• spanning tree: connected acyclic subgraph (i.e. tree) containing all vertices of an undirected
connected graph

• minimum spanning tree: spanning tree of smallest weight for a weighted graph
• weight: sum of weights on all edges

• given 𝑛 points, connect them in the cheapest possible way, such that there is a path between
every pair of points

• arises in all sorts of networks: communications, computer, transportation, electrical

– cheapest way to achieve connectivity
– identifies clusters in data sets
– classification in archaeology, biology, …
– helpful for constructing approximate solutions to more difficult problems e.g. travelling
salesman problem

• exhaustive search approach

– exponential growth with graph size (especially for dense graphs)
– generating all spanning trees is more difficult than finding minimum spanning tree

Prim’s Algorithm

• construct minimum spanning tree through sequence of expanding subtrees
• initial subtree consists of arbitrary vertex
• algorithm expands the tree greedily by attaching nearest neighbour not in the tree

– nearest: vertex out of tree connected to vertex in tree by edge of smallest weight

• algorithm stops when all vertices are in the tree
• total iterations: 𝑛 − 1

1 Prim(G)
2 # Prim's algorithm for constructing minimum spanning tree
3 # Input: weight graph G=<V,E>
4 # Output: E_T, set of edges composing minimum spanning tree of G
5 V_T = {v_0} # arbitrary vertex
6 E_T = empty_set
7 for i from 1 to |V|-1:
8 find minimum weight edge e* = (v*, u*) among all edges (v, u), such

that v is in V_T,
9 and u is in V-V_T
10 V_T = union(V_T, u*)

2

Greedy Algorithms 2020-04-01 11:00

11 E_T = union(E_T, e*)
12 return E_T

• implementation requires each vertex not in the current tree to have information about shortest
edge connecting it to vertex: attach labels to vertex

– name of nearest vertex
– weight (length) edge

• if no adjacent vertices:

– name: ∞
– label: null

Dijkstra’s Algorithm

3

	Greedy Algorithms
	Table of Contents
	Overview
	Minimum Spanning Tree Problem
	Prim's Algorithm
	Dijkstra's Algorithm

