
Divide and Conquer 2020-03-29 15:20

Divide and Conquer

Table of Contents

• Overview
• General divide and conquer recurrence relation
• Binary Tree

– Height

• Tree traversals
• Closest Pair
• Topological Sorting

– DFS topological sort

Overview

• divide and conquer:

– split into multiple smaller problems
– solve these: typically recursive, andmay become brute force when sufficiently small
– combine sub-problem results to get final solution

1

Divide and Conquer 2020-03-29 15:20

Figure 1: divide_and_conquer

• not necessarily more efficient than brute force
• some divide and conquer algorithms are the most efficient algorithms possible
• well suited to parallel computation, where each subproblem is solved simultaneously on a dis-
tinct processor

2

Divide and Conquer 2020-03-29 15:20

General divide and conquer recurrence relation

• problem size 𝑛 can be divided into 𝑏 sub-problems of size 𝑛/𝑏, with 𝑎 sub-problems needing to
be solved

– i.e. 𝑎 ≥ 1, 𝑏 > 1, with 𝑎, 𝑏 constants

• with 𝑛 = 𝑏𝑘 for some 𝑘 ∈ ℤ+: time complexity 𝑇 (𝑛)

𝑇 (𝑛) = 𝑎𝑇 (𝑎
𝑏) + 𝑓(𝑛)

• 𝑓(𝑛): time spent dividing into subproblems and combining subproblem solutions

• applying the master theorem: if 𝑓(𝑛) ∈ Θ(𝑛), 𝑘 > 0:

𝑇 (𝑛) ∈
⎧{{
⎨{{⎩

Θ(𝑛𝑘) if 𝑎 < 𝑏𝑘

Θ(𝑛𝑘 log 𝑛) if 𝑎 = 𝑏𝑘

Θ(𝑛log 𝑎𝑏) if 𝑎 > 𝑏𝑘

3

Divide and Conquer 2020-03-29 15:20

Binary Tree

- Binary tree T: finite set of nodes; a root + 2 disjoint binary trees 𝑇𝐿 (left) and 𝑇𝑅; otherwise empty

• all subtrees are also binary trees: many problems can be approached with divide and
conquer/recursive algorithms

• not all questions about binary trees require traversal of entire tree

– e.g. search and insert requires processing one of two subtrees

Height

• height: length of longest path from root to leaf

1 """
2 Recusively compute height of binary tree
3 input: binary tree T
4 output: height of T
5 """
6 Height(T):
7 if T is empty:
8 return -1

4

Divide and Conquer 2020-03-29 15:20

9 else:
10 return max(Height(T_L), Height(T_R) + 1

• measure instance size by number of nodes 𝑛(𝑇)
• number of comparisons formax height will be the same as number of additions𝐴(𝑛(𝑇)), so for

𝑛(𝑇) > 0 with 𝐴(0) = 0:

𝐴(𝑛(𝑇)) = 𝐴(𝑛(𝑇𝐿)) + 𝐴(𝑛(𝑇𝑅)) + 1

• checking the tree is empty is actually the most common operation here
• consider the tree drawn with internal nodes (circles) and empty children as external nodes

(rectangles)
• ⟹ comparison to empty set occurs for all internal and external nodes, while addition is only
for internal nodes

• for a full binary tree with 𝑛 internal nodes, every node except the root is 1 of 2 children
• total internal + external nodes is then:

𝑛 + 𝑥 = 2𝑛 + 1

So

𝑥 = 𝑛 + 1

Number of comparisons to empty tree 𝐶(𝑛) is then:

𝐶(𝑛) = 𝑛 + 𝑥 = 𝑛 + 1

5

Divide and Conquer 2020-03-29 15:20

Number of additions 𝐴(𝑛) is:
𝐴(𝑛) = 𝑛

Tree traversals

• most import divide and conquer algorithms for trees are tree traversals
• preorder traversal: root → left subtree → right subtree
• inorder traversal: left subtree → root → right subtree
• postorder traversal: left subtree → right subtree → root

Figure 2: tree_traversals

• preorder: 𝑎, 𝑏, 𝑑, 𝑔, 𝑒, 𝑐, 𝑓

• inorder: 𝑑, 𝑔, 𝑏, 𝑒, 𝑎, 𝑓, 𝑐

• postorder: 𝑔, 𝑑, 𝑒, 𝑏, 𝑓, 𝑐, 𝑎

6

Divide and Conquer 2020-03-29 15:20

• efficiency: identical to that of height, as recursive calls are made for each node of extended
binary tree

Closest Pair

• brute force closest pair: Θ(𝑛2)

• 𝑃 : set of 𝑛 > 1 distinct points in Cartesian plane, ordered by x-coordinate (non-decreasing)

• 𝑄: set of 𝑛 > 1 distinct points in Cartesian plane, ordered by y-coordinate (non-decreasing)

• if 2 ≤ 𝑛 ≤ 3: solve by brute force

• 𝑛 > 3:

– divide points into 2 subsets𝑃𝑙, 𝑃𝑟 of size ⌊𝑛/2⌋, analogous to vertical line throughmedian
x-coordinate

– solve recursively for 𝑃𝑙, 𝑃𝑟, to produce minimum distance 𝑑𝑙, 𝑑𝑟
– combine result: 𝑑 = min 𝑑𝑙, 𝑑𝑟
– now need to consider whether there are any pairs of points 𝑝𝑙 ∈ 𝑃𝑙, 𝑝𝑟 ∈ 𝑃𝑟 such that

𝑑𝑖𝑠𝑡(𝑝𝑙, 𝑝𝑟) < 𝑑; i.e. are there any points between 𝑃𝑙, 𝑃𝑟 closer than 𝑑 that we missed by
splitting up the problem?

– only need to consider points from a strip of width 2𝑑 around themedian, call these points
𝑆 obtained from 𝑄

– scan S, looking for any points closer than 𝑑𝑚𝑖𝑛:

* for a point $p’(x’, y’) to be closer to 𝑝(𝑥, 𝑦) than 𝑑𝑚𝑖𝑛, the point must follow 𝑝
* i.e. |𝑦 − 𝑦′| < 𝑑𝑚𝑖𝑛
* so 𝑝′ must be in a rectangle with width 2𝑑 and height 𝑑𝑚𝑖𝑛
* rectangle can only contain a few points as points in left and right rectanglemust be at

least 𝑑 distance apart

* can be shown that rectangle has ≤ 8 points (more rigorously ≤ 6)
* algorithm considers nomore than 5 next points on list 𝑆 before moving to the next 𝑝

• linear time for dividing problem in two

• linear time for combining solutions

• if 𝑛 is a power of 2:

𝑇 (𝑛) = 2𝑇 (𝑛
2) + 𝑓(𝑛)

7

Divide and Conquer 2020-03-29 15:20

where 𝑓(𝑛) ∈ Θ(𝑛) Applying master theorem, with 𝑎 = 2, 𝑏 = 2, 𝑑 = 1:

𝑇 (𝑛) ∈ Θ(𝑛 log 𝑛)

- best efficiency possible for this problem: can be shown that any algorithm for this problem is
Ω(𝑛 log 𝑛)

1 EfficientClosestPair(P, Q):
2 # solve closest pair using divide and conquer
3 # input: array P of n >= 2 points sorted in nondecreasing order in x-

coord
4 # array Q in >= 2 points sorted in nondecreasing order in y-

coord
5 # output: euclidean distance between closest pair of points
6 if n <= 3:
7 return BruteForceClosestPair(P, Q)
8 else:
9 copy first ceil(n/2) points of P to array P_l
10 copy same ceil(n/2) points of Q to array Q_l
11 copy remaining floor(n/2) points of P to array P_r
12 copy same floor(n/2) points of Q to Q_r
13 d_l = EfficientClosestPair(P_l, Q_l)
14 d_r = EfficientClosestPair(P_r, Q_r)
15 d = min(d_l, d_r)
16 m = P[ceil(n/2)-1].x
17 copy all points of Q for which abs(x-m) < d into S[0..num-1]
18 dminsq = d^2
19 for i = 0 to num-2:
20 k = i + 1
21 while k <= num-1 and (S[k].y-S[i].y)^2 < dminsq:
22 dminsq = min((S[k].x-S[i].x)^2+(S[k].y-S[i].y)^2, dminsq)
23 k += 1
24
25 return sqrt(dminsq)

Topological Sorting

• digraph traversal can be performedwith DFS andBFS, but the structure of the forests this yields
can bemuchmore complex than for an undirected graph

• DFS forest for a digraph can have (referring to digraph below)

– tree edges: (𝑎𝑏, 𝑏𝑐, 𝑑𝑒)
– back edges: (𝑏𝑎)
– forward edges: (𝑎𝑐)
– cross edges: (𝑑𝑐)

8

Divide and Conquer 2020-03-29 15:20

(a) Digraph (b) DFS forest of digraph for DFS traversal started at 𝑎

• directed cycle: sequence of 3+ vertices which are connected as ordered, starting and ending
on the same vertex

• presence of back-edge on DFS forest ⇒ digraph has directed cycle
• dag/directed acyclic graph: digraph with no directed cycles
• topological sort: find an order of vertices such that for every edge in the graph, the start vertex
is listed before the end vertex

– solution exists ⟺ graph is a dag

DFS topological sort

• perform DFS traversal
• note the order in which vertices become dead ends, such that they are popped off the traversal
stack

• the reverse order of this is a solution to the topological sort
• if a back edge is encountered, the graph is not a dag, so a topological sort is impossible
• to understand why this works: when a vertex 𝑣 is popped off the DFS stack, no vertex 𝑢 with
an edge (𝑢, 𝑣) can be among the vertices popped off before 𝑣. If there was such a vertex, (𝑢, 𝑣)
would be a back edge. This implies𝑢will be listed after 𝑣 in the popped-offorder list, andbefore

9

Divide and Conquer 2020-03-29 15:20

𝑣 in the reversed list

10

	Divide and Conquer
	Table of Contents
	Overview
	General divide and conquer recurrence relation
	Binary Tree
	Height

	Tree traversals
	Closest Pair
	Topological Sorting
	DFS topological sort

