Divide and Conquer 2020-03-2915:20

Divide and Conquer

Table of Contents

« Overview

General divide and conquer recurrence relation

Binary Tree
- Height

Tree traversals

Closest Pair

Topological Sorting

- DFStopological sort

Overview

« divide and conquer:

- splitinto multiple smaller problems
- solve these: typically recursive, and may become brute force when sufficiently small
- combine sub-problem results to get final solution

Divide and Conquer 2020-03-2915:20

problem sze‘>

/

subproble /5ubproblem E\I
of size nfE \ of size n/2 /

v

solution to
subproblem 2

solution to
subproblem 1

solution to
the original problem

Figure 1: divide_and_conquer

+ not necessarily more efficient than brute force
+ some divide and conquer algorithms are the most efficient algorithms possible
« well suited to parallel computation, where each subproblem is solved simultaneously on a dis-

tinct processor

Divide and Conquer 2020-03-2915:20

General divide and conquer recurrence relation

problem size n can be divided into b sub-problems of size n /b, with a sub-problems needing to
be solved

- i.e.a>1,b > 1, with a, b constants

« withn = b* for some k € Z*: time complexity T'(n)

T(n) = al () + f(n)

+ f(n): time spent dividing into subproblems and combining subproblem solutions

applying the master theorem: if f(n) € O(n), k > 0:

O(n¥)ifa < b*
T(n) € § O(nFlogn)ifa = bk
O(n's®) if ¢ > bF

Divide and Conquer 2020-03-2915:20

Binary Tree

Tleft Tright

- Binary tree T: finite set of nodes; a root + 2 disjoint binary trees 7', (left) and T's; otherwise empty

« all subtrees are also binary trees: many problems can be approached with divide and
conquer/recursive algorithms
« not all questions about binary trees require traversal of entire tree

- e.g.search and insert requires processing one of two subtrees

Height

+ height: length of longest path from root to leaf

Recusively compute height of binary tree
input: binary tree T
output: height of T
Height(T):
if T is empty:
return -1

Divide and Conquer 2020-03-2915:20

else:
return max(Height(T_L), Height(T_R) + 1

+ measure instance size by number of nodes n(T")
+ number of comparisons for max height will be the same as number of additions A(n(T")), so for
n(T) > 0with A(0) = 0:
A(n(T)) = A(n(Ty)) + A(n(Tg)) +1

« checking the tree is empty is actually the most common operation here
« consider the tree drawn with internal nodes (circles) and empty children as external nodes

O

[]
(a) (b)

« —> comparison to empty set occurs for all internal and external nodes, while addition is only

(rectangles)

for internal nodes
« for afull binary tree with n internal nodes, every node except the root is 1 of 2 children
« totalinternal + external nodes is then:

n+x=2n+1

So

r=n+1
Number of comparisons to empty tree C'(n) is then:

Cn)=n+z=n+1

Divide and Conquer 2020-03-2915:20

Number of additions A(n) is:

Tree traversals

« most import divide and conquer algorithms for trees are tree traversals

preorder traversal: root — left subtree — right subtree
+ inorder traversal: left subtree — root — right subtree

postorder traversal: left subtree — right subtree — root

Figure 2: tree_traversals

« preorder: a,b,d, g,e,c, f
e inorder: d,g,b,e,a, f,c

« postorder: g,d,e, b, f,c,a

Divide and Conquer 2020-03-2915:20

« efficiency: identical to that of height, as recursive calls are made for each node of extended
binary tree

Closest Pair

« brute force closest pair: ©(n?)

« P:setofn > 1distinct points in Cartesian plane, ordered by x-coordinate (non-decreasing)
+ Q: setofn > 1distinct points in Cartesian plane, ordered by y-coordinate (non-decreasing)
« if2 < n < 3: solve by brute force

e n > 3:

- divide pointsinto 2 subsets P}, P, of size | n/2], analogous to vertical line through median
x-coordinate
- solve recursively for P, P, to produce minimum distance d;, d

- combineresult: d = mind,, d,

- now need to consider whether there are any pairs of points p;, € P, p, € P, such that
dist(p;,p,) < d;i.e.are there any points between P}, P, closer than d that we missed by
splitting up the problem?

- only need to consider points from a strip of width 2d around the median, call these points
S obtained from @

- scan S, looking for any points closer than d,,,in:

* for a point $p’(x’, y’) to be closer to p(z, y) than d,,,in, the point must follow p

* e |ly—y'| <d,in

* so p’ must be in a rectangle with width 2d and height d,,,in

* rectangle can only contain a few points as points in left and right rectangle must be at
least d distance apart

* can be shown that rectangle has < 8 points (more rigorously < 6)

* algorithm considers no more than 5 next points on list S before moving to the next p

+ linear time for dividing problem in two
« linear time for combining solutions

« ifnisapowerof 2:

Divide and Conquer 2020-03-2915:20

where f(n) € ©(n) Applying master theorem, witha = 2,b = 2,d = 1:

T(n) € ©(nlogn)

- best efficiency possible for this problem: can be shown that any algorithm for this problem is

Q(nlogn)

EfficientClosestPair (P, Q):
solve closest pair using divide and conquer
dinput: array P of n >= 2 points sorted in nondecreasing order in x-

#

coord

array Q in >= 2 points sorted in nondecreasing order in y-

coord

output: euclidean distance between closest pair of points
if n <= 3:

return BruteForceClosestPair (P, Q)

else:

copy first ceil(n/2) points of P to array P_1
copy same ceil(n/2) points of Q to array Q_1
copy remaining floor(n/2) points of P to array P_r
copy same floor(n/2) points of Q to Q_r
d_1 = EfficientClosestPair(P_1, Q_1)
d_r = EfficientClosestPair(P_r, Q_r)
d = min(d_1, d_r)
m Plceil(n/2)-1].x
copy all points of Q for which abs(x-m) < d into S[0..num-1]
dminsq = dA2
for i = 0 to num-2:
=4 +1
<

= num-1 and (S[k].y-S[i].y)”"2 < dminsq:
dminsg = min((S[k].x=-S[i].x)"A2+(S[k].y-S[i].y)*2, dminsq)

return sqrt(dminsq)

Topological Sorting

« digraph traversal can be performed with DFS and BFS, but the structure of the forests this yields

can be much more complex than for an undirected graph

+ DFS forest for a digraph can have (referring to digraph below)

tree edges: (ab, be, de)
back edges: (ba)
forward edges: (ac)
cross edges: (dc)

Divide and Conquer 2020-03-2915:20

(@) (b) 20 (4
/) :

(a) (b)

(a) Digraph (b) DFS forest of digraph for DFS traversal started at a

« directed cycle: sequence of 3+ vertices which are connected as ordered, starting and ending
on the same vertex

+ presence of back-edge on DFS forest = digraph has directed cycle

+ dag/directed acyclic graph: digraph with no directed cycles

« topological sort: find an order of vertices such that for every edge in the graph, the start vertex
is listed before the end vertex

- solution exists <= graphisadag

DFS topological sort

« perform DFS traversal

+ note the order in which vertices become dead ends, such that they are popped off the traversal
stack

« the reverse order of this is a solution to the topological sort

« if a back edge is encountered, the graph is not a dag, so a topological sort is impossible

+ to understand why this works: when a vertex v is popped off the DFS stack, no vertex u with
an edge (u, v) can be among the vertices popped off before v. If there was such a vertex, (u, v)
would be a back edge. Thisimplies u will be listed after v in the popped-off order list, and before

Divide and Conquer 2020-03-2915:20

v in the reversed list

10

	Divide and Conquer
	Table of Contents
	Overview
	General divide and conquer recurrence relation
	Binary Tree
	Height

	Tree traversals
	Closest Pair
	Topological Sorting
	DFS topological sort

