
Brute Force and Exhaustive Search 2020-03-18 15:12

Brute Force and Exhaustive Search

Table of Contents

• Brute Force

– Selection sort
– Bubble sort
– Sequential Search
– String matching
– Closest-Pair

• Exhaustive Search

– Travelling Salesman Problem
– Knapsack Problem
– Assignment Problem

Brute Force

• brute force: straightforward approach to solving problem, “just do it”

– shouldn’t be overlooked: brute force is applicable to wide variety of problems
– for some problems, produces reasonable algorithms of practical value with no limit on
instance size

– expense of designingmore efficient algorithmmay not be justified if brute-force can solve
with acceptable speed

– even if inefficient, it may be useful for solving small-size instances of a problem
– provides baseline to judgemore efficient alternatives against

Selection sort

• scan entire list for smallest element

• swap this element with the first element

• repeat from second element, third element, …

• after 𝑛 − 1 passes, list is sorted

1 SelectionSort(A[0..n-1])
2 # sort given array by selection sort

1



Brute Force and Exhaustive Search 2020-03-18 15:12

3 # input: array A[0..n-1] of orderable elements
4 # output: array A[0..n-1] sorted in non-decreasing order
5 for i=0 to n-2 do
6 min = i
7 for j=i+1 to n-1 do
8 if A[j] < A[min]:
9 min = j
10 swap A[i] and A[min]

• basic operation: key comparison

• number of times executed depends only on array size

𝐶(𝑛) =
𝑛−2
∑
𝑖=0

𝑛−1
∑

𝑗=𝑖+1
1 =

𝑛−2
∑
𝑖=0

[(𝑛 − 1) − (𝑖 + 1) + 1] =
𝑛−2
∑
𝑖=0

(𝑛 − 1 − 𝑖) = 𝑛(𝑛 − 1)
2 ∈ Θ(𝑛2)

• selection sort is Θ(𝑛2) for all inputs

• number of key swaps is only Θ(𝑛) which makes it suitable for swapping small number of large
items

Bubble sort

• compare adjacent elements of list
• exchange them if they are out of order: largest element “bubbles up” to end of list
• next pass: 2nd largest element bubbles up
• repeat 𝑛 − 1 times until all elements are sorted

1 BubbleSort(A[0..n-1])
2 # sorts a given array by bubble sort
3 # input: array A[0..n-1] of orderable elements
4 # output: array A[0..n-1] sorted in non-decreasing order
5 for i=0 to n-2 do
6 for j=0 to n-2-i do
7 if A[j+1] < A[j]:
8 swap A[j] and A[j+1]

• basic operation: key comparison
• number of key comparisons same for all arrays

𝐶(𝑛) =
𝑛−2
∑
𝑖=0

𝑛−2
∑
𝑗=0

1 =
𝑛−2
∑
𝑖=0

[(𝑛 − 2) − 0 + 1] =
𝑛−2
∑
𝑖=0

(𝑛 − 1 − 𝑖) = 𝑛(𝑛 − 1)
2 ∈ Θ(𝑛2)

• number of key swaps is dependent on input

2



Brute Force and Exhaustive Search 2020-03-18 15:12

• in worst case (decreasing array): same as the number of key comparisons
• canmake a simple tweak to improve the algorithm: if there are no exchanges during a pass, the
list is sorted and we can stop. It is still Θ(𝑛2) on worst and average cases

First application of brute-force approach often results in analgorithm that canbe improvedwithmodest
effort

Sequential Search

• compare successive elements of a list with a given search key until either amatch is found (suc-
cessful search) or list is exhausted without finding a match (unsuccessful search)

• strength: simplicity
• weakness: inefficiency
• simple enhancement: if you append search key to end of the list, search for the key will have to
be successful, and therefore you can eliminate end of list check altogether

1 SequentialSearch2(A[0..n], K)
2 # implements sequential search with search key as a sentinel
3 # input: array A of n elements and search key K
4 # output: index of first element in A[0..n-1] whose value is equal to K
5 # or -1 if no such element
6 A[n] = k
7 i = 0
8 while A[i] != K do
9 i++
10
11 if i < n:
12 return i
13 else:
14 return -1

• enhancement for sorted input: stop search if element is ≥ search key

Stringmatching

• text: string of 𝑛 characters
• pattern: string of 𝑚(≤ 𝑛) characters
• find 𝑖, index of leftmost character of text substring matching the pattern
• brute force approach:

– align pattern against first 𝑚 characters
– startmatchingcorrespondingpairsof characters from left to rightuntil eitherall characters
match, or a mismatch is found

3



Brute Force and Exhaustive Search 2020-03-18 15:12

– nomatch: shift pattern one position to right and repeat
– match: return index

• last possible position there can still be a match: 𝑛 − 𝑚

1 BruteForceStringMatch(T[0..n-1], P[0..m-1])
2 """
3 implements brute force string matching
4 input: array T[0..n-1] of n characters of text
5 array P[0..m-1] of m characters of pattern
6 output: index of first character that starts a matching substring
7 -1 if search is unsuccessful
8 """
9 for i = 0 to n-m do:
10 j = 0
11 while j < m and P[j] = T[i+j] do:
12 j++
13 if j = m:
14 return i
15 return -1

• In worst case, algorithm needs to make 𝑚(𝑛 − 𝑚 + 1) comparisons, so ∈ 𝑂(𝑚𝑛)j e.g.

1 T = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab"
2 P = "aab"

• in average case, has been shown to be linear, Θ(𝑛)

Closest-Pair

• find two closest points in a set of 𝑛 points
• numerical data: typically uses Euclidean distance
• cluster analysis: based on 𝑛 data points, organise into hierarchy of clusters based on ametric

– text, non-numerical data: may use other metric, e.g. Hamming distance
– bottom-up algorithm:
– begin with each element as separate cluster, merge into successively larger clusters by
combining pairs of clusters

• consider 2D closest-pair problem: points (𝑥, 𝑦)

– distance between points 𝑝𝑖(𝑥𝑖, 𝑦𝑖), 𝑝𝑗(𝑥𝑗, 𝑦𝑗) is:

𝑑(𝑝𝑖, 𝑝𝑗) = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2

4



Brute Force and Exhaustive Search 2020-03-18 15:12

• brute force approach: compute distance between each pair of points and find a pair with the
smallest distance

– avoid repeating distance computation for pairs of pointsmultiple times 𝑑(𝑝𝑖, 𝑝𝑗), 𝑑(𝑝𝑗, 𝑝𝑖)
so only compute for (𝑝𝑖, 𝑝𝑗) where 𝑖 < 𝑗

1 BruteforceClosestPair(P):
2 """
3 find distance between two closest points in the plane by brute force
4 input: list of P of n (>= 2) points p1(x1,y1), ... pn(xn, yn)
5 output: distance between closest pair of points
6 """
7 d = infinity
8 for i = 1 to n-1:
9 for j = i + 1 to n do
10 d = min(d sqrt((p[i].x- p[j].x)^2 + (p[i].y-p[j].y)^2))
11 return d

• Computingsqrt is tricky: to improve this, wecan simply compute𝑑2 and thencompute 𝑠𝑞𝑟𝑡(𝑑)
when we are returning the value

• basic operation: squaring a number, which happens twice for each pair of points
• so the complexity is

𝐶(𝑛) =
𝑛−1
∑
𝑖=1

𝑛
∑

𝑗=𝑖+1
2 = 2

𝑛−1
∑
𝑖=1

(𝑛 − 𝑖) = 𝑛(𝑛 − 1) ∈ Θ(𝑛2)

Exhaustive Search

• exhaustive search: brute-force approach to combinatorial problems

– generate each element of the problem domain
– select those that satisfy all constraints
– find desired elements (e.g. one that optimises objective function)

• requires algorithm for generating combinatorial objects: this is currently assumed to exist

Travelling Salesman Problem

• travelling salesman problem (TSP): find shortest tour through a given set of 𝑛 settings that
visits each city exactly once before returning to starting city

– represent by weighted graph

5



Brute Force and Exhaustive Search 2020-03-18 15:12

* vertex: city

* edge weight: distance

– with this formulation, problem becomes finding the shortest Hamiltonian circuit of the
graph

• Hamiltonian circuit: cycle that passes through all vertices of graph exactly once

– can represent as sequence of n+1 adjacent vertices 𝑣𝑖0
, 𝑣𝑖1

, ..., 𝑣𝑖0

* 𝑣𝑖0
is at the start and end

* each vertex is distinct

– assume, without loss of generality, all circuits start and end at one particular vertex (as
they are cycles)

– we can generate all tours as all permutations of 𝑛 − 1 intermediate cities, compute tour
length, and find the shortest one

– some of the tours differ only by direction: you can then cut the number of vertex permuta-
tions in half: only consider permutations in which intermediate vertex b precedes vertex
c

• exhaustive search impractical for TSP for all but very small 𝑛

Knapsack Problem

• 𝑛 items of known weights 𝑤1, ..., 𝑤𝑛 and values 𝑣1, ..., 𝑣𝑛
• knapsack of capacity 𝑊
• find most valuable subset of items that fit into the knapsack
• exhaustive search: generate all subsets of𝑛 items given that total weight of each subset doesn’t
exceed 𝑊 ; find largest value among them

– number of subsets of 𝑛-element set: 2𝑛

– $ (2^n), regardless of how efficiently you generate the subsets
– extremely inefficient on every input
– e.g. of anNP-hard problem: no polynomial-time algorithms known for any NP-hard prob-
lem

* many computer scientists believe that such algorithms do not exist, but has not been
proven

Assignment Problem

• 𝑛 people who need to be assigned to execute 𝑛 jobs, one person per job

6



Brute Force and Exhaustive Search 2020-03-18 15:12

– each person is assigned to exactly one job
– each job is assigned to exactly one person

• cost that would accrue if _i_th person is assigned to _j_th job is 𝐶[𝑖, 𝑗] for each pair 𝑖, 𝑗 ∈
[1, ..., 𝑛]

• find an assignment with minimum total cost

• feasible solutions can be described by 𝑛-tuples ⟨𝑗𝑖, .., 𝑗𝑛⟩

• 𝑗𝑖 indicates job number assigned to 𝑖th person

• there is a one-to-one correspondence between feasible assignments and permutations of first
𝑛 integers

• exhaustive search approach:

– generate all permutations of 1, ..., 𝑛
– compute total cost of each assignment
– select the feasible assignment with the lowest cost
– number of permutations in general case: 𝑛!

• exhaustive search impractical for all but very small instances of the problem

• Hungarianmethod is a more efficient algorithm

• most often, there are no knownpolynomial-time algorithms for problemswhose domains grow
exponentially (for exact solutions)

7


	Brute Force and Exhaustive Search
	Table of Contents
	Brute Force
	Selection sort
	Bubble sort
	Sequential Search
	String matching
	Closest-Pair

	Exhaustive Search
	Travelling Salesman Problem
	Knapsack Problem
	Assignment Problem



