
Analysis of Algorithms 2020-03-08 12:57

Analysis of Algorithms

Table of Contents

• What analysis measures
• Running time
• Orders of Growth
• Efficiencies
• Asymptotic Notations
• Comparing Orders of Growth

– L’Hopital’s rule
– Stirling’s Formula

• Efficiency Classes
• Process: Analysing time efficiency of non-recursive algorithms

– Basic rules

• Process: analysing time efficiency of recursive algorithms

– Divide and Conquer

What analysis measures

• time complexity/efficiency: how fast an algorithm runs
• space complexity/efficiency: amount of space needed to run an algorithm and space required
for input/output

• most algorithms run longer on longer inputs, so consider efficiency as a function of input size 𝑛
• when input is a single number, and 𝑛 is a magnitude (e.g. checking if 𝑛 is prime), you measure
size using 𝑏, the number of bits in 𝑛’s binary representation:

𝑏 = ⌊log2 𝑛⌋ + 1

Running time

• counting all operations that run is usually difficult and unnecessary
• instead identifybasic operation that has highest proportion of running time and count number
of times this is executed

– usually most time-consuming operation on innermost loop

1



Analysis of Algorithms 2020-03-08 12:57

– e.g. sorting: basic operation is key comparison
– arithmetic: (least time consuming) addition ~ subtraction <multiplication <division (most
time consuming)

• time complexity analysis: determine number of times basic operation is executed for input size
𝑛

Orders of Growth

• small 𝑛: differences between algorithms are in the noise
• large 𝑛: the order of growth of the time complexity dominates and differentiates between algo-
rithms

Some functions
log2 𝑛 < 𝑛 < 𝑛 log2 𝑛 < 𝑛2 < 𝑛3 < 2𝑛 < 𝑛!

• log grows so slowly you would expect an algorithm with basic-operation to run practically in-
stantaneously on inputs of all realistic size

• change of base results in multiplicative constant, so you can simply write log 𝑛 when you are
only interested in order of growth

log𝑎 𝑛 = log𝑎 𝑏 log𝑏 𝑛

• 2𝑛 and 𝑛! are both exponential-growth functions. Algorithms requiring an exponential number
of operations are practical for solving only problems of very small size

Efficiencies

Algorithm run-time can be dependent on particulars of input e.g. sequential search

Efficiency can be: - worst-case: algorithm runs longest among all possible inputs of size 𝑛 - best-
case: algorithm runs fastest among all possible inputs of size 𝑛 - average-case: algorithm runs on
typical/random input; typicallymore difficult to assess and requires assumptions about input - amor-
tized: for caseswhere a single operation could be expensive, but remainder of operations occurmuch
better than worst-case efficiency - amortize high cost over entire sequence

Asymptotic Notations

Notations for comparingorders of growth: -𝑂: big-oh;≤order of growth -𝑂(𝑔(𝑛)): set of all functions
with lower/same order of growth as 𝑔(𝑛) as 𝑛 → ∞ - Ω: big-omega; ≥ order of growth - Θ: big-theta;

2



Analysis of Algorithms 2020-03-08 12:57

= order of growth

e.g.

𝑛 ∈ 𝑂(𝑛2)

𝑛
2 (𝑛 − 1) ∈ 𝑂(𝑛2)

𝑛3 ∉ 𝑂(𝑛2)

Definition: A function 𝑡(𝑛) ∈ 𝑂(𝑔(𝑛)) if ∃𝑐 ∈ ℝ+, 𝑛0 ∈ ℤ+ s.t. ∀𝑛 ≥ 𝑛0:

𝑡(𝑛) ≤ 𝑐𝑔(𝑛)

Figure 1: big_o

Big O

3



Analysis of Algorithms 2020-03-08 12:57

Definition: A function 𝑡(𝑛) ∈ Ω(𝑔(𝑛)) if ∃𝑐 ∈ ℝ+, 𝑛0 ∈ ℤ+ s.t. ∀𝑛 ≥ 𝑛0:

𝑡(𝑛) ≥ 𝑐𝑔(𝑛)

Definition: A function 𝑡(𝑛) ∈ Θ(𝑔(𝑛)) if ∃𝑐1, 𝑐2 ∈ ℝ+, 𝑛0 ∈ ℤ+ s.t. ∀𝑛 ≥ 𝑛0:

𝑐1𝑔(𝑛) ≤ 𝑡(𝑛) ≤ 𝑐2𝑔(𝑛)

Figure 2: big_theta

BigΘ

Theorem: If 𝑡1(𝑛) ∈ 𝑂(𝑔1(𝑛)) and 𝑡2(𝑛) ∈ 𝑂(𝑔2(𝑛)):

𝑡1(𝑛) + 𝑡2(𝑛) ∈ 𝑂(max{𝑔1(𝑛), 𝑔2(𝑛)})

Analogous assertions also hold for Ω, Θ

4



Analysis of Algorithms 2020-03-08 12:57

• This implies that an algorithm comprised of two consecutively executed components has an
overall efficiency determined by the part with a higher order of growth (the least efficient part)

• e.g.: check if an array has equal elements by first sorting, then checking consecutive items for
equality

– part 1 may take nomore than 𝑛
2 (𝑛 − 1) comparisons, i.e. ∈ 𝑂(𝑛2)

– part 2 may take nomore than 𝑛 − 1 comparisons, i.e. ∈ 𝑂(𝑛)
– overall efficiency: 𝑂(𝑛2)

Comparing Orders of Growth

• to directly compare two functions, compute the limit of their ratio:

lim
𝑛→∞

𝑡(𝑛)
𝑔(𝑛)

– This could be: (∼: order of growth)

1. 0 ∶∼ 𝑡(𝑛) <∼ 𝑔(𝑛)
2. 𝑐 ∶∼ 𝑡(𝑛) =∼ 𝑔(𝑛)
3. ∞ ∶∼ 𝑡(𝑛) >∼ 𝑔(𝑛)

• Case a, b ⇒ 𝑡(𝑛) ∈ 𝑂(𝑔(𝑛))
• Case b, c ⇒ 𝑡(𝑛) ∈ Ω(𝑔(𝑛))
• Case b ⇒ 𝑡(𝑛) ∈ Θ(𝑔(𝑛))

L’Hopital’s rule

lim
𝑛→∞

𝑡(𝑛)
𝑔(𝑛) = lim

𝑛→∞
𝑡′(𝑛)
𝑔′(𝑛)

Stirling’s Formula

For large 𝑛
𝑛! ≈

√
2𝜋𝑛𝑛

𝑒
𝑛

Efficiency Classes

5



Analysis of Algorithms 2020-03-08 12:57

Class Name Comments

1 constant very few algorithms fall in this class

log 𝑛 logarithmic results from cutting problem’s size by constant factor

𝑛 linear scan a list of size 𝑛 e.g. sequential search

𝑛 log 𝑛 linearithmic divide-and-conquer e.g. mergesort; quicksort

𝑛2 quadratic two embedded loops e.g. basic sorting; 𝑛 × 𝑛 matrix operations

𝑛3 cubic three embedded loops; e.g. often used in linear algebra

2𝑛 exponential generate all subsets of 𝑛-element set

𝑛! factorial generate all permutations of 𝑛-element set

Process: Analysing time efficiency of non-recursive algorithms

1. define parameter indicating input’s size
2. identify algorithm’s basic operation (typically on innermost loop)
3. check if number of times basic operation is executed is only a function of input size

• if not: worst case, average case to be considered separately

4. set up sum expressing number of times the basic operation is executed
5. use formulas/summanipulation to find a closed form solution for the count or determine order

of growth

Basic rules

Scalar multiplication
𝑢

∑
𝑖=𝑙

𝑐𝑎𝑖 = 𝑐
𝑢

∑
𝑖=𝑙

𝑎𝑖

Addition 𝑢
∑
𝑖=𝑙

𝑎𝑖 + 𝑏𝑖 =
𝑢

∑
𝑖=𝑙

𝑎𝑖 +
𝑢

∑
𝑖=𝑙

𝑏𝑖

𝑢
∑
𝑖=𝑙

1 = 𝑢 − 𝑙 + 1

6



Analysis of Algorithms 2020-03-08 12:57

In particular
𝑛

∑
𝑖=1

1 = 𝑛

Triangle numbers
𝑛

∑
𝑖=𝑙

𝑖 = 𝑛(𝑛 + 1)
2

Geometric series 𝑛
∑
𝑖=1

𝑥𝑘 = 1 − 𝑥𝑘+1

1 − 𝑥

Process: analysing time efficiency of recursive algorithms

1. define parameter indicating input size
2. identify basic operation
3. check if number of times basic operation is executed is only a function of input size

• if not: worst case, average case to be considered separately

4. setup recurrence relationand initial conditioncorresponding tonumberof timesbasicoperation
is executed

5. solve recurrence or ascertain order of growth of its solution

• solution of recurrence relation can be by:

– backwards substitution/telescoping method: substitution of M(n-1), M(n-2), …, and
identifying the pattern

• can be helpful to build a tree of recursive calls, and count the number of nodes to get the total
number of calls

Divide and Conquer

• binary/n-ary recursion is encountered when input is split into parts, e.g. binary search
• you see the term 𝑛/𝑘 in the recurrence relation
• backwards substitution stumbles on values of 𝑛 that are not powers of 𝑘
• to solve these, youassume𝑛 = 𝑘𝑖 and thenuse the smoothness rule,which implies thatorderof
growth for𝑛 = 𝑘𝑖 gives a correct answer about order of growth∀𝑛 For the following definitions,
𝑓(𝑛) is a non-negative function defined for 𝑛 ∈ ℕ

7



Analysis of Algorithms 2020-03-08 12:57

DEFINITION: eventually non-decreasing

• eventually nondecreasing: if ∃𝑛0 ∈ ℤ+ s.t. 𝑓(𝑛) is non-decreasing on [𝑛0, ∞], i.e.

𝑓(𝑛1) ≤ 𝑓(𝑛2) ∀ 𝑛2 > 𝑛1 ≥ 𝑛0

– e.g. 𝑓(𝑛) = (𝑛 − 100)2: eventually non-decreasing

* decreasing on interval [0, 100]
* most functions encountered in algorithms are eventually non-decreasing

DEFINITION: smooth 𝑓(𝑛) is smooth if:

• eventually non-decreasing, AND

• 𝑓(2𝑛) ∈ Θ(𝑓(𝑛))

• e.g. 𝑓(𝑛) = 𝑛 log 𝑛 is smooth because

𝑓(2𝑛) = 2𝑛 log 2𝑛 = 2𝑛(log 2 + log 𝑛) = 2 log 2𝑛 + 2𝑛 log 𝑛 ∈ Θ(𝑛 log 𝑛)

• fast growing functions e.g. 𝑎𝑛 where 𝑎 > 1, 𝑛! are not smooth

• e.g. 𝑓(𝑛) = 2𝑛

𝑓(2𝑛) = 22𝑛 = 4𝑛 ∉ Θ(2𝑛)

THEOREM: Let 𝑓(𝑛) be smooth. For any fixed integer 𝑏 ≥ 2:

𝑓(𝑏𝑛) ∈ Θ(𝑓(𝑛))

i.e. ∃𝑐𝑏, 𝑑𝑏 ∈ ℝ+, 𝑛0 ∈ ℤ+ s.t.

𝑑𝑏𝑓(𝑛) ≤ 𝑓(𝑏𝑛) ≤ 𝑐𝑏𝑓(𝑛) for 𝑛 ≥ 𝑛0

• corresponding assertion also holds for 𝑂 and Ω

THEOREM: Smoothness rule Let 𝑇 (𝑛) be an eventually non-decreasing function Let 𝑓(𝑛) be a
smooth function. If $ T(n) ��(f(n)) $ for values of 𝑛 that are powers of 𝑏 where 𝑏 ≥ 2, then:

𝑇 (𝑛) ∈ Θ(𝑓(𝑛))

• analogous results also holds for 𝑂 and Ω

8



Analysis of Algorithms 2020-03-08 12:57

• allows us to expand information about order of growth established for 𝑇 (𝑛), based on conve-
nient subset of values (powers of 𝑏) to entire domain

THEOREM: Master Theorem Let 𝑇 (𝑛) be an eventually non-decreasing function that satisfies the
recurrence

𝑇 (𝑛) = 𝑎𝑇 (𝑛/𝑏) + 𝑓(𝑛) for 𝑛 = 𝑏𝑘, 𝑘 = 1, 2, ...

𝑇 (1) = 𝑐

where 𝑎 ≥ 1, 𝑏 ≥ 2, 𝑐 > 0. If 𝑓(𝑛) ∈ Θ(𝑛𝑑) where 𝑑 ≥ 0, then

𝑇 (𝑛) ∈
⎧{{
⎨{{⎩

Θ(𝑛𝑑) if 𝑎 < 𝑏𝑑

Θ(𝑛𝑑 log 𝑛) if 𝑎 = 𝑏𝑑

Θ(𝑛log 𝑎𝑏) if 𝑎 > 𝑏𝑑

• analogous results also holds for 𝑂 and Ω
• helps with quick efficiency analysis of divide-and-conquer and decrease-by-constant-facotr al-
gorithms

9


	Analysis of Algorithms
	Table of Contents
	What analysis measures
	Running time
	Orders of Growth
	Efficiencies
	Asymptotic Notations
	Comparing Orders of Growth
	L'Hopital's rule
	Stirling's Formula

	Efficiency Classes
	Process: Analysing time efficiency of non-recursive algorithms
	Basic rules

	Process: analysing time efficiency of recursive algorithms
	Divide and Conquer



