Analysis of Algorithms 2020-03-08 12:57

Analysis of Algorithms

Table of Contents

« What analysis measures

« Runningtime

+ Orders of Growth

« Efficiencies

« Asymptotic Notations

« Comparing Orders of Growth

- L'Hopital’s rule
- Stirling’s Formula

« Efficiency Classes
+ Process: Analysing time efficiency of non-recursive algorithms

- Basicrules
+ Process: analysing time efficiency of recursive algorithms

- Divide and Conquer

What analysis measures

+ time complexity/efficiency: how fast an algorithm runs

+ space complexity/efficiency: amount of space needed to run an algorithm and space required
for input/output

« most algorithms run longer on longer inputs, so consider efficiency as a function of input size n

« when input is a single number, and n is a magnitude (e.g. checking if n is prime), you measure
size using b, the number of bits in n’s binary representation:

b=|log,n|+1

Running time

« counting all operations that run is usually difficult and unnecessary
« instead identify basic operation that has highest proportion of running time and count number
of times this is executed

- usually most time-consuming operation on innermost loop

Analysis of Algorithms 2020-03-08 12:57

- e.g. sorting: basic operation is key comparison
- arithmetic: (least time consuming) addition ~ subtraction < multiplication < division (most
time consuming)

« time complexity analysis: determine number of times basic operation is executed for input size

n

Orders of Growth

« small n: differences between algorithms are in the noise
+ large n: the order of growth of the time complexity dominates and differentiates between algo-
rithms

Some functions
log,n <n <nlog,n < n? <n3 < 2" < nl

+ log grows so slowly you would expect an algorithm with basic-operation to run practically in-
stantaneously on inputs of all realistic size

« change of base results in multiplicative constant, so you can simply write log n when you are
only interested in order of growth

log, n = log, blog, n

« 2™ and n! are both exponential-growth functions. Algorithms requiring an exponential number
of operations are practical for solving only problems of very small size

Efficiencies

Algorithm run-time can be dependent on particulars of input e.g. sequential search

Efficiency can be: - worst-case: algorithm runs longest among all possible inputs of size n - best-
case: algorithm runs fastest among all possible inputs of size n - average-case: algorithm runs on
typical/random input; typically more difficult to assess and requires assumptions about input - amor-
tized: for cases where a single operation could be expensive, but remainder of operations occur much
better than worst-case efficiency - amortize high cost over entire sequence

Asymptotic Notations

Notations for comparing orders of growth: - O: big-oh; < order of growth - O(g(n)): set of all functions
with lower/same order of growth as g(n) asn — oo - : big-omega; > order of growth - ©: big-theta;

Analysis of Algorithms 2020-03-08 12:57

= order of growth

e.g.
n € O(n?)

g(n —1) € O(n?)

n® ¢ O(n?)

Definition: A function t(n) € O(g(n)) if 3¢ € R*,ny € Z" st. Vn > ny:

t(n) < cg(n)

cgln)
tin)
doesn't
matter
> 11
Figure 1: big_o

Big O

Analysis of Algorithms 2020-03-08 12:57

Definition: A function ¢(n) € Q(g(n))if 3¢ € R, n, € Z1 st. Vn > ng:
t(n) = cg(n)

Definition: A function ¢(n) € O(g(n)) if 3¢;,cy € RT,ny € Z1 st. Vn > ny:

c1g(n) <t(n) < cpg(n)

cigin)
A |
I tin)
|
i cpglin)
I
|
|
|
|
|
|
I
|
doesn't |
matter |
I
|
I
fl"l:l » 1

Figure 2: big_theta

Big ©

Theorem: Ift,(n) € O(g;(n)) and ty(n) € O(gy(n)):

t1(n) +t5(n) € O(max{g,(n),g2(n)})

Analogous assertions also hold for (2, ©

Analysis of Algorithms 2020-03-08 12:57

« This implies that an algorithm comprised of two consecutively executed components has an
overall efficiency determined by the part with a higher order of growth (the least efficient part)

+ e.g.: check if an array has equal elements by first sorting, then checking consecutive items for
equality

- part1may take no more than % (n — 1) comparisons, i.e. € O(n?)
- part 2 may take no more than n — 1 comparisons, i.e. € O(n)
- overall efficiency: O(n?)

Comparing Orders of Growth

+ to directly compare two functions, compute the limit of their ratio:

- This could be: (~: order of growth)
1. 0:~t(n) <~ g(n)
2. c:~t(n) =~ g(n)
3. 00 :~ t(n) >~ g(n)

+ Casea,b=t(n) € O(g(n))
« Caseb,c=t(n) € Q(g(n))
« Caseb=t(n) € O(g(n)

L’Hopital’s rule

Stirling’s Formula

For large n
n'rl
n! ~ v2mn—

Efficiency Classes

Analysis of Algorithms 2020-03-08 12:57

Class Name Comments
1 constant very few algorithms fall in this class

logn logarithmic results from cutting problem’s size by constant factor
n linear scan a list of size n e.g. sequential search

nlogn linearithmic divide-and-conquer e.g. mergesort; quicksort

n? quadratic two embedded loops e.g. basic sorting; n X n matrix operations
n3 cubic three embedded loops; e.g. often used in linear algebra
2" exponential generate all subsets of n-element set
n! factorial generate all permutations of n-element set

Process: Analysing time efficiency of non-recursive algorithms

1. define parameter indicating input’s size
2. identify algorithm’s basic operation (typically on innermost loop)
3. check if number of times basic operation is executed is only a function of input size

« if not: worst case, average case to be considered separately

4. set up sum expressing number of times the basic operation is executed
5. use formulas/sum manipulation to find a closed form solution for the count or determine order
of growth

Basic rules

Scalar multiplication

u u
=l

1=l

Addition

u u u
dai b= a+Y b
i=l i=l 1=l

u

leu—l—i—l

i=l

Analysis of Algorithms 2020-03-08 12:57

In particular

Triangle numbers

Geometric series

k+1

2 1—=z
Zajk: 1l—=z

=1

Process: analysing time efficiency of recursive algorithms

1. define parameter indicating input size

2. identify basic operation

3. check if number of times basic operation is executed is only a function of input size

« if not: worst case, average case to be considered separately

setup recurrence relation and initial condition corresponding to number of times basic operation
is executed
solve recurrence or ascertain order of growth of its solution

solution of recurrence relation can be by:

- backwards substitution/telescoping method: substitution of M(n-1), M(n-2), ..., and
identifying the pattern

can be helpful to build a tree of recursive calls, and count the number of nodes to get the total
number of calls

Divide and Conquer

binary/n-ary recursion is encountered when input is split into parts, e.g. binary search

you see the term n/k in the recurrence relation

backwards substitution stumbles on values of n that are not powers of &
tosolvethese,youassumen = k? and then use the smoothness rule, which implies that order of
growth forn = k? gives a correct answer about order of growth Vn For the following definitions,
f(n) is a non-negative function defined forn € N

Analysis of Algorithms 2020-03-08 12:57

DEFINITION: eventually non-decreasing

« eventually nondecreasing: if 3n, € Z* s.it. f(n) is non-decreasing on [n, x|, i.e.
f(ny) < f(ny) Yy >ny 2ny

- e.g. f(n) = (n — 100)?: eventually non-decreasing
* decreasing on interval [0, 100]
* most functions encountered in algorithms are eventually non-decreasing

DEFINITION: smooth f(n)is smooth if:

eventually non-decreasing, AND

* f(2n) € ©(f(n))

+ e.g. f(n) = nlogn is smooth because

f(2n) = 2nlog2n = 2n(log2 + logn) = 2log2n + 2nlogn € ©(nlogn)

fast growing functions e.g. a™ where a > 1, n! are not smooth

«eg f(n)=2"
f2n) = 2" = 4" ¢ ©(2")

THEOREM: Let f(n) be smooth. For any fixed integer b > 2:
f(bn) € ©(f(n))
i.e.d¢y, dy, € R n, € Z* st
dyf(n) < f(bn) < ¢, f(n) forn > ny,

+ corresponding assertion also holds for O and (2

THEOREM: Smoothness rule Let 7'(n) be an eventually non-decreasing function Let f(n) be a
smooth function. If $ T(n) BR(f(n)) $ for values of n that are powers of b where b > 2, then:

T(n) € ©(f(n))

« analogous results also holds for O and Q

Analysis of Algorithms 2020-03-08 12:57

« allows us to expand information about order of growth established for T'(n), based on conve-
nient subset of values (powers of b) to entire domain

THEOREM: Master Theorem Let 7T'(n) be an eventually non-decreasing function that satisfies the
recurrence
T(n) = aT(n/b) + f(n)forn =bF k=1,2, ..

T(l)=c
wherea > 1,b>2,¢ > 0. If f(n) € ©(n?) whered > 0, then
O(nd)ifa < b?

T(n) € § O(ntlogn)ifa = b?
O(ns®) if ¢ > b?
« analogous results also holds for O and Q

« helps with quick efficiency analysis of divide-and-conquer and decrease-by-constant-facotr al-
gorithms

	Analysis of Algorithms
	Table of Contents
	What analysis measures
	Running time
	Orders of Growth
	Efficiencies
	Asymptotic Notations
	Comparing Orders of Growth
	L'Hopital's rule
	Stirling's Formula

	Efficiency Classes
	Process: Analysing time efficiency of non-recursive algorithms
	Basic rules

	Process: analysing time efficiency of recursive algorithms
	Divide and Conquer

