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Data types

Integer

• int: 2 or 4 bytes (platform dependent)

• char: 1 byte

• short: 2 bytes

• long: 4 bytes

• corresponding unsigned types for non-negative numbers

• e.g. intmay store -32768 to 32767

– unsigned int stores integers from 0 to 65535

Floating point numbers

• float
• double

char s and strings

• char stores a single ASCII character
• Strings: arrays of chars terminated by a null byte ('\0')

– e.g. “Hello world!” is stored as the array of characters: ['H', 'e', 'l', 'l', 'o',
'', 'w', 'o', 'r', 'l', 'd', '!', '\0']

Boolean values

• no built-in boolean type, integers can be used

• non-zero values: true

• 0: false

• C99 with stdbool.h provides bool data type with true and false
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Function declarations

• place function prototype declarations at top of file as good practice so you don’t need to worry
about ordering of functions in file

1 // prototype (at top of file)
2 return_type function_name(arg_type arg_name);
3
4 // function implementation
5 return_type function_name(arg_type arg_name) {
6 return ret_value;
7 }

main Function

• when a C program is run from command line, main function is executed
• argc: argument counter; number of arguments supplied
• argv: argument vector; array of argument strings
• return value: indicates success (0) or failure (non-zero) of program

Program to print the number of arguments and what they are:

1 int main(int argc, char **argv) {
2 int i;
3
4 printf("Number of arguments: %d\n", argc);
5 for (i = 0; i < argc; i++) {
6 printf("%s\n", argv[i]);
7 }
8 return 0;
9 }

Compilation

To compile hello.c

1 $ gcc -Wall -pedantic -o hello hello.c

• -Wall: warnings all; highest level compiler warnings turned on
• -pedantic: enables another set of compiler errors
• -o <file_name>: output program should be called <file_name>
• <source>.c: source file
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• for debugging, compile with -g to access source code/variable names/function names from in-
side debuggers e.g. gdb, lldb

Preprocessor directives

• keywords that start with # e.g. #define, #include
• these are evaluated prior to compilation by the preprocessor, which effectively copy and pastes
the definition/included function definition into the code

Library functions

Standard library header files imported using #include preprocessor directive

1 #include <assert.h> // contains assert, frequently used to verify
malloc

2 #include <math.h> // math functions e.g. cos, sin, log, sqrt, ceil,
floor

3 #include <stdio.h> // input/output e.g. printf, scanf
4 #include <stdlib.h> // contains NULL, memory allocation e.g. malloc,

free
5
6 int main(int argc, char **argv) {
7 /* ... */
8 return 0;
9 }

Pointers

• pointers are memory addresses
• we can have types which hold memory addresses to integers and floats using an asterisk
• int *my_ptr: contains address of an int
• int **: pointer to a pointer; address of an address to an integer
• &foo: memory address/pointer to foo; “address of foo”
• *bar: access data stored at pointer bar; “data stored at bar”
• pointer arithmetic: pointer type knows which data type it points to, and therefore knows the
size. If int *my_ptr is a pointer to the start of an array of integers, you can jump forward the
size of an intwith my_ptr+1
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Arrays

• creating a static array: int my_array[100]; to create an array with room for 100 integers

• my_array[7] to access the 8th element of the array

• arrays in C are simply pointers to the first element of the array, so:

– my_array[10] ⟺ *(my_array + 10)
– &my_array[10] ⟺ my_array + 10

• explicit definition of static array: int arr[] = {1, 2, 3, 4, 5};

• tip: always use pointer notation for data types (in function definitions etc.) i.e.

1 // preferred
2 int get_length(int *array) {
3 /* ... */
4 return length;
5 }
6 // not recommended
7 int get_length(int array[]) {
8 /* ... */
9 return length;
10 }

Structs

• encapsulate multiple pieces of data e.g. student record

1 typedef struct student Student;
2 struct student {
3 char *first_name;
4 char *last_name;
5 int id;
6 float mark;
7 }

• here we created a struct studentwhich can be referred to with struct student
• syntactic sugar: typedef this to Student, such that Student is an alias for struct student
• an alternative that avoids the intermediate name is:

1 typedef struct {
2 char *first_name;
3 char *last_name;
4 int id;
5 float mark;
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6 } Student;

• this doesn’t allow you to reference the struct within the definition e.g. nodes for a linked list/-
graph:

1 typedef struct node Node;
2 struct node {
3 int data;
4 Node *next;
5 }

Accessing fields

1 Student matthew;
2 // dot notation
3 matthew.student_number = 123456;
4
5 Student *james = malloc(sizeof(*james));
6 assert(james);
7 // arrow notation
8 james->student = 654321;
9 free(james);
10 james = NULL;

• foo.bar ⟺ (&foo)->bar
• foo->bar ⟺ (*foo).bar

Dynamic Memory Allocation

• variables declared inside a function are usually stored on the stack
• function’s local variables and function parameters exist in a stack frame specific to the function

– stack frame only lasts as long as the function is running
– once the function returns the local variables/function parameters are de-allocated
– size of variables needs to be known at compile time

• malloc requests specific amount of memory on the heapwhich exists until we explicitly free
it

• memoryallocatedat runtime, andmay fail e.g. programalreadyhasused full allowanceofmem-
ory OS has reserved for it

• use assert to check the pointer is not NULL i.e. has been successfully allocated
• malloc returns a void pointer
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1 void *malloc(size_t size) // size: size of memory block [bytes]

Example: allocatingmemory for an int

1 int *my_int = malloc(sizeof(*my_int)); // cast to (int *)
2 assert(my_int); // check pointer is not null, i.e. malloc succeeded
3 /* do stuff */
4 free(my_int); // free the memory
5 my_int = NULL; // ensure that we don't inadvertently access freed

memory

Variable-sized array

• arrays are pointers to first element in the array, so you can use malloc to allocate a variable
sized array. For n items you can allocate a block with enough space for n adjacent items:

1 int n = 10000;
2 double *array = malloc(sizeof(*array) * n);
3 /* magic happens here */
4 free(array);
5 array = NULL;

Header Files

• modules are used to separate out code into related groups. Consists of:

– module.h: consists of a header file, containing:

* info on how to use the module,

* function prototypes

* type definitions

– module.c: file containing implementations

• #include "module.h" is then used to access the definitions

Import guards

• C doesn’t allow you to declare things more than once
• good practice: use if guards to prevent a .h file being includedmore than once
• define a macro per header file, and only declare anything if it hasn’t been defined yet
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e.g. to write a hello world module

hello.h:

1 // import guard
2 #ifndef HELLO_H
3 #define HELLO_H
4
5 // print "hello, {name}!" on a line
6 void hello(char *name);
7 #endif

hello.c:

1 #include <stdio.h>
2 #include "hello.h"
3
4 // print "hello, {name}!" on a line
5 void hello(char *name) {
6 printf("Hello, %s!\n", name);
7 }

main.c

1 #include "hello.h"
2
3 int main(int argc, char **argv) {
4 char *name = "Barney";
5 hello(name);
6 return 0;
7 }
8
9 To compile a program with multiple `.c` files:
10 ```console
11 $ gcc -o <executable name> <list of .c files>

For this example

1 $ gcc -o main main.c hello.c

Makefiles

make keeps track of changes across various files, only compiles what needs to be recompiled when
something changes - example Makefile for compiling C programs

1 # # # # # # #
2 # Sample Makefile for compiling a simple multi-module C program
3 #
4 # created for COMP20007 Design of Algorithms 2017
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5 # by Matt Farrugia <matt.farrugia@unimelb.edu.au>
6 #
7
8 # Welcome to this sample Makefile. If you're new to make and makefiles,

have a
9 # read through with the comments and follow their instructions.
10
11
12 # VARIABLES - change the values here to match your project setup
13
14 # specifying the C Compiler and Compiler Flags for make to use
15 CC = gcc
16 CFLAGS = -Wall
17
18 # exe name and a list of object files that make up the program
19 EXE = main-2
20 OBJ = main-2.o list.o stack.o queue.o
21
22
23 # RULES - these tell make when and how to recompile parts of the

project
24
25 # the first rule runs by default when you run 'make' ('make rule' for

others)
26 # in our case, we probably want to build the whole project by default,

so we
27 # make our first rule have the executable as its target
28 # |
29 # v
30 $(EXE): $(OBJ) # <-- the target is followed by a list of prerequisites
31 $(CC) $(CFLAGS) -o $(EXE) $(OBJ)
32 # ^
33 # and a TAB character, then a shell command (or possibly multiple, 1

line each)
34 # (it's very important to use a TAB here because that's what make is

expecting)
35
36 # the way it works is: if any of the prerequisites are missing or need

to be
37 # recompiled, make will sort that out and then run the shell command to

refresh
38 # this target too
39
40 # so our first rule says that the executable depends on all of the

object files,
41 # and if any of the object files need to be updated (or created), we

should do
42 # that and then link the executable using the command given
43
44
45 # okay here's another rule, this time to help make create object files
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46 list.o: list.c list.h
47 $(CC) $(CFLAGS) -c list.c
48
49 # this time the target is list.o. its prerequisites are list.c and list

.h, and
50 # the command (its 'recipe') is the command for compiling (but not

linking)
51 # a .c file
52
53 # list.c and list.h don't get their own rules, so make will just check

if the
54 # files of those names have been updated since list.o was last modified

, and
55 # re-run the command if they have been changed.
56
57
58 # actually, we don't need to provide all that detail! make knows how to

compile
59 # .c files into .o files, and it also knows that .o files depend on

their .c
60 # files. so, it assumes these rules implicitly (unless we overwrite

them as
61 # above).
62
63 # so for the rest of the rules, we can just focus on the prerequisites!
64 # for example stack.o needs to be rebuilt if our list module changes,

and
65 # also if stack.h changes (stack.c is an assumed prerequisite, but not

stack.h)
66 stack.o: stack.h list.h
67
68 # note: we only depend on list.h, not also list.c. if something changes

inside
69 # list.c, but list.h remains the same, then stack.o doesn't need to be

rebuilt,
70 # because the way that list.o and stack.o are to be linked together

will remain
71 # the same (as per list.h)
72
73 # likewise, queue.o depends on queue.h and the list module
74 queue.o: queue.h list.h
75
76 # so in the future we could save a lot of space and just write these

rules:
77 # $(EXE): $(OBJ)
78 # $(CC) $(CFLAGS) -o $(EXE) $(OBJ)
79 # list.o: list.h
80 # stack.o: stack.h list.h
81 # queue.o: queue.h list.h
82
83
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84
85 # finally, this last rule is a common convention, and a real nice-to-

have
86 # it's a special target that doesn't represent a file (a 'phony' target

) and
87 # just serves as an easy way to clean up the directory by removing all

.o files
88 # and the executable, for a fresh start
89
90 # it can be accessed by specifying this target directly: 'make clean'
91 clean:
92 rm -f $(OBJ) $(EXE)

Linking with external libraries

Introduction to GCC

e.g. to access math functions sqrt, log etc. in math.h, C source code: calc.c

1 #include <math.h>

• static libraries: stored in archive files (.a)

– created with GNU archiver tool ar

• library search path: where gcc looks for library files

– default: standard libraries found searched for in:

* /usr/local/lib

* /usr/lib

– search for file is from top to bottom, with first file found taking precedence
– math library: /usr/lib/libm.a
– standard library: /usr/lib/libc.a

• include path: where gcc looks for header files

– corresponding headers in /usr/include
–
– math header: /usr/include/math.h

-l<name>

Link the math library with full path:
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1 $ gcc -Wall calc.c /usr/lib/libm.a -o calc

More succinctly: compile with -lm flag to link math library

1 $ gcc -Wall calc.c -lm -o calc

• linkers typically search for functions from left to right in libraries specified
• if data.c uses library libglpk.awhich uses libm.a, compile as:

1 $ gcc -Wall data.c -lglpk -lm

-I/path/to/dir and -L/path/to/dir

•

-I : specify include path

• -L: specify library path

• e.g. dbmain.c: makes uses of header gdbm.h and library ‘libgdbm.a’

1 #include <gdbm>

• GDBM v1.8.3 package installed under ‘/opt/gdbm-1.8.3’:

– header file: /opt/gdbm-1.8.3/include/gdbm.h
– library: /opt/gdbm-1.8.3/lib/libgdm.a

• compile and link dbmain.cwith

1 $ gcc -Wall -I/opt/gdbm-1.8.3/include -L/opt/gdbm-1.8.3/lib dbmain.c -
lgdbm

Environment variables

• by specifying environment variables, this can be simplified:

1 $ C_INCLUDE_PATH=/opt/gdbm-1.8.3/include
2 $ export C_INCLUDE_PATH
3 $ LIBRARY_PATH=/opt/gdbm-1.8.3/lib
4 $ export LIBRARY_PATH
5 $ gcc -Wall dbmain.c -lgdbm
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• extended search paths: DIR1:DIR2:DIR3:...
• e.g. include current directory and /opt/gdbm-1.8.3/include

1 $ C_INCLUDE_PATH=.:/opt/gdbm-1.8.3/include

• compiler searches directories in order:

1. command-line: -I, -L, left-to-right
2. environment variables
3. default system directories

Shared libraries

• static library .a
• shared libraries: .so (shared object)

– uses more advanced linking, reducing size of executable
– library can be updated without recompiling dependent programs

• dynamic linking: before executable starts running, machine code for external functions is
copied from shared library file

– executable linked against shared library contains only a small table of functions it needs,
rather than complete machine code from object files for external functions

– reduces executable size: only one copy of a library needed for multiple programs
– most OSs provide virtual memory so that one copy of a shared library in physical memory
can be used by all running programs

• gcc compiles to use shared libraries by default

– if .so file found in link path, this is used in preference to .a (static library)

• when executable file is started, loader must find shared library to load into memory

– by default loader searches in default system directories /usr/local/lib, /usr/lib

• to set load path:

1 $ LD_LIBRARY_PATH=/opt/gdbm-1.8.3/lib
2 $ export LD_LIBRARY_PATH
3 $ ./a.out
4 # runs successfully

• environment variables can be set in your bash/shell profile
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Forced static linking

• -static avoids use of shared libraries

1 $ gcc -Wall -static -I/opt/gdbm-1.8.3/include/ -L/opt/gdbm-1.8.3/lib/
dbmain.c -lgdbm

2 $ ./a.out
3 # runs successfully
4 ``
5
6 ## Warnings
7
8 - `-Wall` shows a variety of warnings
9 - To help find problems:
10 ```console
11 $ gcc -ansi -pedantic -Wall -W -Wconversion -Wshadow -Wcast-qual -

Wwrite-strings

Debug

• conditional compilation

1 #define DEBUG
2
3 #ifdef DEBUG
4 // stuff here only compiles when DEBUG is defined
5 #endif

• gcc has built in debug support with the -DDEBUG flag, without you needing to define DEBUG

1 $ gcc -Wall -DDEBUG -o program program.c

Function pointers

• e.g. Moffatt 10.4

1 double (*F) (double);
2 F= sqrt("x=%.4f, F(x)=%.4f\n", x, F(x));
3 // prints "x=2.0000, F(x)=1.4142"

• allow you to pass in an arbitrary function as an argument to another function
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Polymorphism

• polymorphic library: allows software modules to be abstracted and reused
• additional design effort but muchmore versatile
• make use of void * for generic data
• implementation specific functions are passed by function pointer (e.g. to execute comparison
between instances)

e.g. Moffatt 10.5

1 // treeops.h
2 typedef struct node node_t;
3
4 struct node {
5 void *data; // pointer to stored structure
6 node_t *left; // left subtree of node
7 node_t *right; // right subtree of node
8 };
9
10 typedef struct {
11 node_t *root; // root node of tree
12 int (*cmp)(void*, void*); // function pointer
13 } tree_t;
14
15 // create an empty tree, pass in a comparison function to be used

subsequently
16 tree_t *make_empty_tree(int func(void*, void*));
17 int is_empty_tree(tree_t *tree);
18 void *search_tree(tree_t *tree, void *key);
19 tree_t *insert_in_order(tree_t, *tree, void *value);
20 // traverse the tree, with pointer to action function to take
21 void traverse_tree(tree_t *tree, void action(void*));
22 void free_tree(tree_t *tree);

static

• static variable: allows functions to maintain state between calls

– variable cannot be accessed outside the function
– do not use with recursion

• static function: cannotbeaccessedoutside the source file inwhich it is defined;way toensure
private routines are only accessible within a module
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const

• storage class const can be used to tag variables that do not change in the execution of the
program, allowing the compiler to handle more efficiently
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