
C Review 2020-03-03 20:43

C Review

Table of Contents

• Data types

– Integer
– Floating point numbers
– chars and strings
– Boolean values

• Function declarations
• main Function
• Compilation
• Preprocessor directives
• Library functions
• Pointers
• Arrays
• Structs

– Accessing fields

• Dynamic Memory Allocation

– Example: allocating memory for an int
– Variable-sized array

• Header Files
• Import guards
• Makefiles
• Linking with external libraries

– -l<name>
– -I/path/to/dir and -L/path/to/dir
– Environment variables
– Shared libraries
– Forced static linking

• Debug
• Function pointers
• Polymorphism
• static
• const

1

C Review 2020-03-03 20:43

Data types

Integer

• int: 2 or 4 bytes (platform dependent)

• char: 1 byte

• short: 2 bytes

• long: 4 bytes

• corresponding unsigned types for non-negative numbers

• e.g. intmay store -32768 to 32767

– unsigned int stores integers from 0 to 65535

Floating point numbers

• float
• double

char s and strings

• char stores a single ASCII character
• Strings: arrays of chars terminated by a null byte ('\0')

– e.g. “Hello world!” is stored as the array of characters: ['H', 'e', 'l', 'l', 'o',
'', 'w', 'o', 'r', 'l', 'd', '!', '\0']

Boolean values

• no built-in boolean type, integers can be used

• non-zero values: true

• 0: false

• C99 with stdbool.h provides bool data type with true and false

2

C Review 2020-03-03 20:43

Function declarations

• place function prototype declarations at top of file as good practice so you don’t need to worry
about ordering of functions in file

1 // prototype (at top of file)
2 return_type function_name(arg_type arg_name);
3
4 // function implementation
5 return_type function_name(arg_type arg_name) {
6 return ret_value;
7 }

main Function

• when a C program is run from command line, main function is executed
• argc: argument counter; number of arguments supplied
• argv: argument vector; array of argument strings
• return value: indicates success (0) or failure (non-zero) of program

Program to print the number of arguments and what they are:

1 int main(int argc, char **argv) {
2 int i;
3
4 printf("Number of arguments: %d\n", argc);
5 for (i = 0; i < argc; i++) {
6 printf("%s\n", argv[i]);
7 }
8 return 0;
9 }

Compilation

To compile hello.c

1 $ gcc -Wall -pedantic -o hello hello.c

• -Wall: warnings all; highest level compiler warnings turned on
• -pedantic: enables another set of compiler errors
• -o <file_name>: output program should be called <file_name>
• <source>.c: source file

3

C Review 2020-03-03 20:43

• for debugging, compile with -g to access source code/variable names/function names from in-
side debuggers e.g. gdb, lldb

Preprocessor directives

• keywords that start with # e.g. #define, #include
• these are evaluated prior to compilation by the preprocessor, which effectively copy and pastes
the definition/included function definition into the code

Library functions

Standard library header files imported using #include preprocessor directive

1 #include <assert.h> // contains assert, frequently used to verify
malloc

2 #include <math.h> // math functions e.g. cos, sin, log, sqrt, ceil,
floor

3 #include <stdio.h> // input/output e.g. printf, scanf
4 #include <stdlib.h> // contains NULL, memory allocation e.g. malloc,

free
5
6 int main(int argc, char **argv) {
7 /* ... */
8 return 0;
9 }

Pointers

• pointers are memory addresses
• we can have types which hold memory addresses to integers and floats using an asterisk
• int *my_ptr: contains address of an int
• int **: pointer to a pointer; address of an address to an integer
• &foo: memory address/pointer to foo; “address of foo”
• *bar: access data stored at pointer bar; “data stored at bar”
• pointer arithmetic: pointer type knows which data type it points to, and therefore knows the
size. If int *my_ptr is a pointer to the start of an array of integers, you can jump forward the
size of an intwith my_ptr+1

4

C Review 2020-03-03 20:43

Arrays

• creating a static array: int my_array[100]; to create an array with room for 100 integers

• my_array[7] to access the 8th element of the array

• arrays in C are simply pointers to the first element of the array, so:

– my_array[10] ⟺ *(my_array + 10)
– &my_array[10] ⟺ my_array + 10

• explicit definition of static array: int arr[] = {1, 2, 3, 4, 5};

• tip: always use pointer notation for data types (in function definitions etc.) i.e.

1 // preferred
2 int get_length(int *array) {
3 /* ... */
4 return length;
5 }
6 // not recommended
7 int get_length(int array[]) {
8 /* ... */
9 return length;
10 }

Structs

• encapsulate multiple pieces of data e.g. student record

1 typedef struct student Student;
2 struct student {
3 char *first_name;
4 char *last_name;
5 int id;
6 float mark;
7 }

• here we created a struct studentwhich can be referred to with struct student
• syntactic sugar: typedef this to Student, such that Student is an alias for struct student
• an alternative that avoids the intermediate name is:

1 typedef struct {
2 char *first_name;
3 char *last_name;
4 int id;
5 float mark;

5

C Review 2020-03-03 20:43

6 } Student;

• this doesn’t allow you to reference the struct within the definition e.g. nodes for a linked list/-
graph:

1 typedef struct node Node;
2 struct node {
3 int data;
4 Node *next;
5 }

Accessing fields

1 Student matthew;
2 // dot notation
3 matthew.student_number = 123456;
4
5 Student *james = malloc(sizeof(*james));
6 assert(james);
7 // arrow notation
8 james->student = 654321;
9 free(james);
10 james = NULL;

• foo.bar ⟺ (&foo)->bar
• foo->bar ⟺ (*foo).bar

Dynamic Memory Allocation

• variables declared inside a function are usually stored on the stack
• function’s local variables and function parameters exist in a stack frame specific to the function

– stack frame only lasts as long as the function is running
– once the function returns the local variables/function parameters are de-allocated
– size of variables needs to be known at compile time

• malloc requests specific amount of memory on the heapwhich exists until we explicitly free
it

• memoryallocatedat runtime, andmay fail e.g. programalreadyhasused full allowanceofmem-
ory OS has reserved for it

• use assert to check the pointer is not NULL i.e. has been successfully allocated
• malloc returns a void pointer

6

C Review 2020-03-03 20:43

1 void *malloc(size_t size) // size: size of memory block [bytes]

Example: allocatingmemory for an int

1 int *my_int = malloc(sizeof(*my_int)); // cast to (int *)
2 assert(my_int); // check pointer is not null, i.e. malloc succeeded
3 /* do stuff */
4 free(my_int); // free the memory
5 my_int = NULL; // ensure that we don't inadvertently access freed

memory

Variable-sized array

• arrays are pointers to first element in the array, so you can use malloc to allocate a variable
sized array. For n items you can allocate a block with enough space for n adjacent items:

1 int n = 10000;
2 double *array = malloc(sizeof(*array) * n);
3 /* magic happens here */
4 free(array);
5 array = NULL;

Header Files

• modules are used to separate out code into related groups. Consists of:

– module.h: consists of a header file, containing:

* info on how to use the module,

* function prototypes

* type definitions

– module.c: file containing implementations

• #include "module.h" is then used to access the definitions

Import guards

• C doesn’t allow you to declare things more than once
• good practice: use if guards to prevent a .h file being includedmore than once
• define a macro per header file, and only declare anything if it hasn’t been defined yet

7

C Review 2020-03-03 20:43

e.g. to write a hello world module

hello.h:

1 // import guard
2 #ifndef HELLO_H
3 #define HELLO_H
4
5 // print "hello, {name}!" on a line
6 void hello(char *name);
7 #endif

hello.c:

1 #include <stdio.h>
2 #include "hello.h"
3
4 // print "hello, {name}!" on a line
5 void hello(char *name) {
6 printf("Hello, %s!\n", name);
7 }

main.c

1 #include "hello.h"
2
3 int main(int argc, char **argv) {
4 char *name = "Barney";
5 hello(name);
6 return 0;
7 }
8
9 To compile a program with multiple `.c` files:
10 ```console
11 $ gcc -o <executable name> <list of .c files>

For this example

1 $ gcc -o main main.c hello.c

Makefiles

make keeps track of changes across various files, only compiles what needs to be recompiled when
something changes - example Makefile for compiling C programs

1 # # # # # # #
2 # Sample Makefile for compiling a simple multi-module C program
3 #
4 # created for COMP20007 Design of Algorithms 2017

8

C Review 2020-03-03 20:43

5 # by Matt Farrugia <matt.farrugia@unimelb.edu.au>
6 #
7
8 # Welcome to this sample Makefile. If you're new to make and makefiles,

have a
9 # read through with the comments and follow their instructions.
10
11
12 # VARIABLES - change the values here to match your project setup
13
14 # specifying the C Compiler and Compiler Flags for make to use
15 CC = gcc
16 CFLAGS = -Wall
17
18 # exe name and a list of object files that make up the program
19 EXE = main-2
20 OBJ = main-2.o list.o stack.o queue.o
21
22
23 # RULES - these tell make when and how to recompile parts of the

project
24
25 # the first rule runs by default when you run 'make' ('make rule' for

others)
26 # in our case, we probably want to build the whole project by default,

so we
27 # make our first rule have the executable as its target
28 # |
29 # v
30 $(EXE): $(OBJ) # <-- the target is followed by a list of prerequisites
31 $(CC) $(CFLAGS) -o $(EXE) $(OBJ)
32 # ^
33 # and a TAB character, then a shell command (or possibly multiple, 1

line each)
34 # (it's very important to use a TAB here because that's what make is

expecting)
35
36 # the way it works is: if any of the prerequisites are missing or need

to be
37 # recompiled, make will sort that out and then run the shell command to

refresh
38 # this target too
39
40 # so our first rule says that the executable depends on all of the

object files,
41 # and if any of the object files need to be updated (or created), we

should do
42 # that and then link the executable using the command given
43
44
45 # okay here's another rule, this time to help make create object files

9

C Review 2020-03-03 20:43

46 list.o: list.c list.h
47 $(CC) $(CFLAGS) -c list.c
48
49 # this time the target is list.o. its prerequisites are list.c and list

.h, and
50 # the command (its 'recipe') is the command for compiling (but not

linking)
51 # a .c file
52
53 # list.c and list.h don't get their own rules, so make will just check

if the
54 # files of those names have been updated since list.o was last modified

, and
55 # re-run the command if they have been changed.
56
57
58 # actually, we don't need to provide all that detail! make knows how to

compile
59 # .c files into .o files, and it also knows that .o files depend on

their .c
60 # files. so, it assumes these rules implicitly (unless we overwrite

them as
61 # above).
62
63 # so for the rest of the rules, we can just focus on the prerequisites!
64 # for example stack.o needs to be rebuilt if our list module changes,

and
65 # also if stack.h changes (stack.c is an assumed prerequisite, but not

stack.h)
66 stack.o: stack.h list.h
67
68 # note: we only depend on list.h, not also list.c. if something changes

inside
69 # list.c, but list.h remains the same, then stack.o doesn't need to be

rebuilt,
70 # because the way that list.o and stack.o are to be linked together

will remain
71 # the same (as per list.h)
72
73 # likewise, queue.o depends on queue.h and the list module
74 queue.o: queue.h list.h
75
76 # so in the future we could save a lot of space and just write these

rules:
77 # $(EXE): $(OBJ)
78 # $(CC) $(CFLAGS) -o $(EXE) $(OBJ)
79 # list.o: list.h
80 # stack.o: stack.h list.h
81 # queue.o: queue.h list.h
82
83

10

C Review 2020-03-03 20:43

84
85 # finally, this last rule is a common convention, and a real nice-to-

have
86 # it's a special target that doesn't represent a file (a 'phony' target

) and
87 # just serves as an easy way to clean up the directory by removing all

.o files
88 # and the executable, for a fresh start
89
90 # it can be accessed by specifying this target directly: 'make clean'
91 clean:
92 rm -f $(OBJ) $(EXE)

Linking with external libraries

Introduction to GCC

e.g. to access math functions sqrt, log etc. in math.h, C source code: calc.c

1 #include <math.h>

• static libraries: stored in archive files (.a)

– created with GNU archiver tool ar

• library search path: where gcc looks for library files

– default: standard libraries found searched for in:

* /usr/local/lib

* /usr/lib

– search for file is from top to bottom, with first file found taking precedence
– math library: /usr/lib/libm.a
– standard library: /usr/lib/libc.a

• include path: where gcc looks for header files

– corresponding headers in /usr/include
–
– math header: /usr/include/math.h

-l<name>

Link the math library with full path:

11

https://www.linuxtopia.org/online_books/an_introduction_to_gcc/index.html

C Review 2020-03-03 20:43

1 $ gcc -Wall calc.c /usr/lib/libm.a -o calc

More succinctly: compile with -lm flag to link math library

1 $ gcc -Wall calc.c -lm -o calc

• linkers typically search for functions from left to right in libraries specified
• if data.c uses library libglpk.awhich uses libm.a, compile as:

1 $ gcc -Wall data.c -lglpk -lm

-I/path/to/dir and -L/path/to/dir

•

-I : specify include path

• -L: specify library path

• e.g. dbmain.c: makes uses of header gdbm.h and library ‘libgdbm.a’

1 #include <gdbm>

• GDBM v1.8.3 package installed under ‘/opt/gdbm-1.8.3’:

– header file: /opt/gdbm-1.8.3/include/gdbm.h
– library: /opt/gdbm-1.8.3/lib/libgdm.a

• compile and link dbmain.cwith

1 $ gcc -Wall -I/opt/gdbm-1.8.3/include -L/opt/gdbm-1.8.3/lib dbmain.c -
lgdbm

Environment variables

• by specifying environment variables, this can be simplified:

1 $ C_INCLUDE_PATH=/opt/gdbm-1.8.3/include
2 $ export C_INCLUDE_PATH
3 $ LIBRARY_PATH=/opt/gdbm-1.8.3/lib
4 $ export LIBRARY_PATH
5 $ gcc -Wall dbmain.c -lgdbm

12

C Review 2020-03-03 20:43

• extended search paths: DIR1:DIR2:DIR3:...
• e.g. include current directory and /opt/gdbm-1.8.3/include

1 $ C_INCLUDE_PATH=.:/opt/gdbm-1.8.3/include

• compiler searches directories in order:

1. command-line: -I, -L, left-to-right
2. environment variables
3. default system directories

Shared libraries

• static library .a
• shared libraries: .so (shared object)

– uses more advanced linking, reducing size of executable
– library can be updated without recompiling dependent programs

• dynamic linking: before executable starts running, machine code for external functions is
copied from shared library file

– executable linked against shared library contains only a small table of functions it needs,
rather than complete machine code from object files for external functions

– reduces executable size: only one copy of a library needed for multiple programs
– most OSs provide virtual memory so that one copy of a shared library in physical memory
can be used by all running programs

• gcc compiles to use shared libraries by default

– if .so file found in link path, this is used in preference to .a (static library)

• when executable file is started, loader must find shared library to load into memory

– by default loader searches in default system directories /usr/local/lib, /usr/lib

• to set load path:

1 $ LD_LIBRARY_PATH=/opt/gdbm-1.8.3/lib
2 $ export LD_LIBRARY_PATH
3 $./a.out
4 # runs successfully

• environment variables can be set in your bash/shell profile

13

C Review 2020-03-03 20:43

Forced static linking

• -static avoids use of shared libraries

1 $ gcc -Wall -static -I/opt/gdbm-1.8.3/include/ -L/opt/gdbm-1.8.3/lib/
dbmain.c -lgdbm

2 $./a.out
3 # runs successfully
4 ``
5
6 ## Warnings
7
8 - `-Wall` shows a variety of warnings
9 - To help find problems:
10 ```console
11 $ gcc -ansi -pedantic -Wall -W -Wconversion -Wshadow -Wcast-qual -

Wwrite-strings

Debug

• conditional compilation

1 #define DEBUG
2
3 #ifdef DEBUG
4 // stuff here only compiles when DEBUG is defined
5 #endif

• gcc has built in debug support with the -DDEBUG flag, without you needing to define DEBUG

1 $ gcc -Wall -DDEBUG -o program program.c

Function pointers

• e.g. Moffatt 10.4

1 double (*F) (double);
2 F= sqrt("x=%.4f, F(x)=%.4f\n", x, F(x));
3 // prints "x=2.0000, F(x)=1.4142"

• allow you to pass in an arbitrary function as an argument to another function

14

C Review 2020-03-03 20:43

Polymorphism

• polymorphic library: allows software modules to be abstracted and reused
• additional design effort but muchmore versatile
• make use of void * for generic data
• implementation specific functions are passed by function pointer (e.g. to execute comparison
between instances)

e.g. Moffatt 10.5

1 // treeops.h
2 typedef struct node node_t;
3
4 struct node {
5 void *data; // pointer to stored structure
6 node_t *left; // left subtree of node
7 node_t *right; // right subtree of node
8 };
9
10 typedef struct {
11 node_t *root; // root node of tree
12 int (*cmp)(void*, void*); // function pointer
13 } tree_t;
14
15 // create an empty tree, pass in a comparison function to be used

subsequently
16 tree_t *make_empty_tree(int func(void*, void*));
17 int is_empty_tree(tree_t *tree);
18 void *search_tree(tree_t *tree, void *key);
19 tree_t *insert_in_order(tree_t, *tree, void *value);
20 // traverse the tree, with pointer to action function to take
21 void traverse_tree(tree_t *tree, void action(void*));
22 void free_tree(tree_t *tree);

static

• static variable: allows functions to maintain state between calls

– variable cannot be accessed outside the function
– do not use with recursion

• static function: cannotbeaccessedoutside the source file inwhich it is defined;way toensure
private routines are only accessible within a module

15

C Review 2020-03-03 20:43

const

• storage class const can be used to tag variables that do not change in the execution of the
program, allowing the compiler to handle more efficiently

16

	C Review
	Table of Contents
	Data types
	Integer
	Floating point numbers
	chars and strings
	Boolean values

	Function declarations
	main Function
	Compilation
	Preprocessor directives
	Library functions
	Pointers
	Arrays
	Structs
	Accessing fields

	Dynamic Memory Allocation
	Example: allocating memory for an int
	Variable-sized array

	Header Files
	Import guards
	Makefiles
	Linking with external libraries
	-l<name>
	-I/path/to/dir and -L/path/to/dir

	-I: specify include path
	Environment variables
	Shared libraries
	Forced static linking

	Debug
	Function pointers
	Polymorphism
	static
	const

