
Algorithms 2020-03-03 13:06

Algorithms

Table of Contents

• Algorithms
• Greatest common divisor
• Sieve of Eratosthenes
• Algorithmic Problem Solving
• Important problem types
• Linear data structures

– Array
– Linked list
– List
– Stacks
– Queue
– Priority queues

• Graphs

– Graph representations
– Weighted graphs
– Paths and Cycles

• Trees

– Rooted trees
– Ordered trees

• Sets and Dictionaries

– Universal set
– List structure
– Dictionary

Algorithms

• Sequence of unambiguous instructions for solving a problem to obtain required output for le-
gitimate input in a finite amount of time

• multiple valid solutions with different efficiency

1



Algorithms 2020-03-03 13:06

Greatest common divisor

Euclid’s algorithm gcd(m, n)= gcd(n, m mod n)

For example

1 gcd(24, 60) = gcd(60, 24)
2 = gcd(24, 12)
3 = gcd(12, 0)
4 = 12

Since gcd(m, 0)= m

Sieve of Eratosthenes

• algorithm to generate consecutive primes not exceeding a given integer n > 1
• procedure:

– generate a list of prime candidates from 2 to n
– loop over the list, each time eliminating candidates that are multiples of 2, 3, …
– no pass for 4 is necessary as all multiples of 4 have already been eliminated
– algorithm continues until no more numbers can be eliminated; remaining numbers are
prime

• what is largest p whose multiples can still remain on the list to make further iterations of the
algorithm necessary?

– if p is a number whose multiples are being eliminated on the current pass, first multiple
we should consider is p.p because all smaller multiples 2p, ..., (p-1)p have been
eliminated on earlier passes

– p.p should be less than n otherwise it isn’t a candidate, i.e.

1 p \leq \lfloor\sqrt{n}\rfloor

Algorithmic Problem Solving

• understand the problem
• understand the capabilities of the hardware
• decide between exact/approximate solution
• choose design techniques
• design algorithm and data structure

2



Algorithms 2020-03-03 13:06

• prove correctness: prove that algorithmyields required result for every legitimate input in finite
time

– often uses mathematical induction
– for approximation algorithms you need to show error does not exceed defined limit

• analysis

– time efficiency: run time
– space efficiency: memory
– generality

• implement the algorithm

Important problem types

• sorting: rearrange list items in non-decreasing order

– stable: preserves relative order of equal elements
– typically algorithms that switch keys far apart are not stable but are faster
– in-place: doesn’t require extra memory to run

• searching: find a given value (search key) in a given set
• string processing

– e.g. string matching

• graph problems

– graph is a collection of vertices, connected by edges
– e.g. graph traversal, shortest path
– graph-coloring: assign smallest number of colors to vertices of a graph such that no two
adjacent vertices are the same color (event scheduling)

– travelling salesman problem: shortest tour through n cities that visits each city only once

• combinatorial problems

– ask to find a combinatorial object satisfying constraints (e.g. permutation, combination,
subset)

– typically most difficult class of problems: number of objects grows extremely fast with
problem size

• geometric problems: points, lines and polygons

– e.g. computer graphics, robotics, tomography

3



Algorithms 2020-03-03 13:06

– closest-pair problem: given n points in the plane, find the closest pair among them
– convex-hull problem: smallest convex polygon that contains all points of a set

• numerical problems: mathematical objects of continuous nature

– solving systems of equations, computing integrals, evaluating functions

Linear data structures

Array

• sequence of n items of the same data type stored contiguously in memory
• accessible by index
• each element of an array can be accessed by an identical constant amount of time (c.f. linked
lists)

• useful for strings

Linked list

• sequence of nodes each containing data and pointers to other nodes
• singly linked list: each node (except last) contains a single pointer to the next element
• nodes are accessed by traversing the list: time dependent on node’s location
• doesn’t require preliminary reservation of memory
• efficient insertions and deletions
• header: special node at start of list, points to first item in list, could contain:

– metadata about list e.g. current length
– pointer to last element in list

• doubly linked list: each node contains a pointer to the next and previous node

4



Algorithms 2020-03-03 13:06

List

• list: finite sequence of data items
• operations:

– search for
– insert
– delete

Stacks

• stack: list in which insertions and deletions are performed at the end (top) of the list

– last-in-first-out
– picture vertical stack of plates

Queue

• queue: elements added to rear, and removed from the front

5



Algorithms 2020-03-03 13:06

– dequeue: elements deleted from the front
– enqueue: elements added to the rear
– first-in-first-out
– think queue of customers in line

Priority queues

• priority queue: useful for selection of an itemof highest priority fromdynamically changing can-
didates

– collection of data items from a totally ordered universe (e.g. integer/real numbers)

• operations:

– find largest element
– delete largest element
– add a new element

• heap is the most efficient solution to this problem

Graphs

• collection of points, called vertices or nodes, with some connected by edges

• a graph
𝐺 = ⟨𝑉 , 𝐸⟩

, is a pair of two sets

– finite nonempty set V, vertices
– set E of pairs of these items, edges

• if these pairs of vertices is unordered i.e.

(𝑢, 𝑣)

is the same as
(𝑣, 𝑢)

, v and u are adjacent, connected by undirected edge

(𝑢, 𝑣)

6



Algorithms 2020-03-03 13:06

• vertices u and v are endpoints of edge
(𝑢, 𝑣)

– u and_v_ are incident to this edge (and vice versa)

• a graph is undirected if all edges are undirected

• directed edge
(𝑢, 𝑣)

means vertices
(𝑢, 𝑣)

are not the same as vertices
(𝑣, 𝑢)

– from tail u to head v

• a graph is directed if all edges are directed (aka digraphs)

• convenient to label vertices with letters or numbers

• graph with 6 vertices and 7 undirected edges

1 V = \{a, b, c, d, e, f\}
2 \newline
3 E = \{(a,c), (a,d), (b,c), (b,f), (c,e), (d,e), (e,f)\}

- digraph with
6 vertices and 8 directed edges

7



Algorithms 2020-03-03 13:06

1 V = \{a, b, c, d, e, f\}
2 \newline
3 E = \{(a,c), (b,c), (b,f), (c,e), (d,a), (d,e), (e,c), (e,f)\}

Figure 1: directed_graph

• this definition allows loops, including edges connecting vertices to themselves, however unless
stated will be expected to have no loops

• definition disallows multiple edges between the same vertices of an undirected graph:

– number of edges
∣ 𝐸 ∣

– number of vertices
∣ 𝑉 ∣

–
0 ≤∣ 𝐸 ∣≤∣ 𝑉 ∣ (∣ 𝑉 ∣ −1)

2
• graph is complete if every pair of vertices is connected by an edge

– complete graph with
∣ 𝑉 ∣

vertices:
𝐾∣𝑉 ∣

• graph with fewmissing edges is dense

8



Algorithms 2020-03-03 13:06

• graph with few edges present is sparse

Graph representations

• adjacencymatrix: for graph with
𝑛

vertices is
𝑛 × 𝑛

booleanmatrix

– row i, col j: 1 if edge from i to j; 0 otherwise
– undirected graph has a symmetric adjacency matrix

𝐴𝑖𝑗 = 𝐴𝑗𝑖

for all i, j

• adjacency list: collection of linked lists for each vertex containing all adjacent vertices (those
connected by an edge)

• sparse graphs more efficiently represented by adjacency list
• dense graphs more efficiently represented by adjacency matrix

Figure 2: graph_representation

Weighted graphs

• weighted graph: graph with numbers (weights, costs) assigned to edges

9



Algorithms 2020-03-03 13:06

• adjacency matrix can be updated to aweight matrix such that

𝐴𝑖𝑗

is the weight for that edge

– if there is no such edge, entries are
∞

Paths and Cycles

• path from vertex u to vertex v of graph G: sequence of adjacent vertices from u to v.
• simple path: all vertices of a path are distinct
• path length: (num. vertices)-1, (num. edges)
• directed path: sequence of vertices, with each successive pair of vertices u, v having a directed
edge (u,v)

• connected graph: for every pair of vertices u,v there is a path from u to v

– i.e. no unreachable vertices

• a disconnected graph forms multiple connected components: maximal connected subgraphs
of a graph

10



Algorithms 2020-03-03 13:06

Graph becomes disconnected when dashed line is removed

• cycle: path of positive length that starts and ends at the same vertex, without traversing the
same edgemore than once

• acyclic: graph without cycles

Trees

• free tree, aka tree: connected acyclic graph

– Necessary property for graph to be a tree:

* (number of edges) = (number of vertices) - 1

*
∣ 𝐸/ ∣=∣ 𝑉 ∣ −1

– For connected graphs this is a sufficient property; useful for checking if a connected graph
has a cycle

• forest: graphwithnocyclesbut isnotnecessarily connected,witheachcomponentbeingcalled
a tree

11



Algorithms 2020-03-03 13:06

Figure 3: graph_tree_forest

Rooted trees

• for every two vertices in a tree, there exists exactly one simple path fromone vertex to the other
• can select arbitrary vertex in a free tree as root of the rooted tree
• e.g. file system hierarchy

Figure 4: rooted_tree

• ancestor of vertex v: all vertices on simple path from root to vertex v

12



Algorithms 2020-03-03 13:06

– vertex usually considered its own ancestor
– proper ancestor excludes the vertex itself

• if
(𝑢, 𝑣)

is the last edge of simple path from root to vertex v

– u is parent of v
– v is child of u

• sibling: vertices with same parents
• leaf: vertex with no children
• parental: vertex with at least one child
• descendants: all vertices for which v is an ancestor

– proper descendants: excludes v itself

• subtree rooted at v: all descendants of v with all edges connecting
• depth of a vertex v: length of simple path to v
• height of a tree: longest simple path from root to leaf

Ordered trees

• ordered tree: rooted tree in which all children of each vertex are ordered
• binary tree: ordered tree where each vertex has at most two children

– each child is a left child or a right child
– binary tree with root at left child of a vertex in a binary tree is the left subtree
– as subtrees are also binary trees, they are useful for recursive algorithms
– inequality for height h of a binary search tree with n nodes:

⌊log2 𝑛⌋ ≤ ℎ ≤ 𝑛 − 1

• binary search tree: numbers assigned to vertices, with parent vertex being larger than all ele-
ments in left subtree, and smaller than all elements in right subtree

• multiway search tree: generalisation of binary search trees

– useful for efficient access to very large datasets

• first child-next sibling representation: left subtree of vertex is child, while right subtree is sib-
lings.

13



Algorithms 2020-03-03 13:06

– useful for computer representation of an arbitrary ordered tree with widely varying num-
bers of children by converting to a binary tree

Figure 5: binary_search_tree

Sets and Dictionaries

• set: unordered collection of distinct elements
• operations:

– checking membership
– finding union
– finding intersection

Universal set

• consider large set U with n elements
• bit vector: subset S of U can be represented by bit string of size n

e.g.

𝑈 = {1, 2, 3, 4, 5, 6, 7, 8}𝑆 = {2, 3, 7}

• bit string: 01100010
• these set representations allow very fast set operations but with high memory use

14



Algorithms 2020-03-03 13:06

List structure

• more common approach for handling sets
• multiset/bag: circumvents uniqueness set requirement with an unordered collection of items
that are not necessarily distinct

• lists are ordered, where as sets are not: largely this doesn’t matter for practical purposes

Dictionary

• dictionary: data structure that implements most common set operations:

– searching for an item
– adding items
– deleting items

• many implementations, from arrays to hashing and balanced search trees

15


	Algorithms
	Table of Contents
	Algorithms
	Greatest common divisor
	Sieve of Eratosthenes
	Algorithmic Problem Solving
	Important problem types
	Linear data structures
	Array
	Linked list
	List
	Stacks
	Queue
	Priority queues

	Graphs
	Graph representations
	Weighted graphs
	Paths and Cycles

	Trees
	Rooted trees
	Ordered trees

	Sets and Dictionaries
	Universal set
	List structure
	Dictionary



