Algorithms

Table of Contents

- Algorithms
- Greatest common divisor
- Sieve of Eratosthenes
- Algorithmic Problem Solving
- Important problem types
- Linear data structures
- Array
- Linked list
- List
- Stacks
- Queue
- Priority queues
- Graphs
- Graph representations
- Weighted graphs
- Paths and Cycles
- Trees
- Rooted trees
- Ordered trees
- Sets and Dictionaries
- Universal set
- List structure
- Dictionary

Algorithms

- Sequence of unambiguous instructions for solving a problem to obtain required output for legitimate input in a finite amount of time
- multiple valid solutions with different efficiency

Greatest common divisor

```
Euclid's algorithm \(\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \bmod n)\)
```

For example

```
gcd(24, 60) = gcd(60, 24)
    = gcd(24, 12)
    = gcd(12, 0)
    = 12
```

Since $\operatorname{gcd}(m, 0)=m$

Sieve of Eratosthenes

- algorithm to generate consecutive primes not exceeding a given integer $n>1$
- procedure:
- generate a list of prime candidates from 2 to n
- loop over the list, each time eliminating candidates that are multiples of $2,3, \ldots$
- no pass for 4 is necessary as all multiples of 4 have already been eliminated
- algorithm continues until no more numbers can be eliminated; remaining numbers are prime
- what is largest p whose multiples can still remain on the list to make further iterations of the algorithm necessary?
- if p is a number whose multiples are being eliminated on the current pass, first multiple we should consider is $p . p$ because all smaller multiples $2 p, \ldots,(p-1) p$ have been eliminated on earlier passes
- p.p should be less than n otherwise it isn't a candidate, i.e.

```
    p \leq \lfloor\sqrt{n}\rfloor
```


Algorithmic Problem Solving

- understand the problem
- understand the capabilities of the hardware
- decide between exact/approximate solution
- choose design techniques
- design algorithm and data structure
- prove correctness: prove that algorithm yields required result for every legitimate input in finite time
- often uses mathematical induction
- for approximation algorithms you need to show error does not exceed defined limit
- analysis
- time efficiency: run time
- space efficiency: memory
- generality
- implement the algorithm

Important problem types

- sorting: rearrange list items in non-decreasing order
- stable: preserves relative order of equal elements
- typically algorithms that switch keys far apart are not stable but are faster
- in-place: doesn't require extra memory to run
- searching: find a given value (search key) in a given set
- string processing
- e.g. string matching
- graph problems
- graph is a collection of vertices, connected by edges
- e.g. graph traversal, shortest path
- graph-coloring: assign smallest number of colors to vertices of a graph such that no two adjacent vertices are the same color (event scheduling)
- travelling salesman problem: shortest tour through n cities that visits each city only once
- combinatorial problems
- ask to find a combinatorial object satisfying constraints (e.g. permutation, combination, subset)
- typically most difficult class of problems: number of objects grows extremely fast with problem size
- geometric problems: points, lines and polygons
- e.g. computer graphics, robotics, tomography
- closest-pair problem: given n points in the plane, find the closest pair among them
- convex-hull problem: smallest convex polygon that contains all points of a set
- numerical problems: mathematical objects of continuous nature
- solving systems of equations, computing integrals, evaluating functions

Linear data structures

Array

- sequence of n items of the same data type stored contiguously in memory
- accessible by index
- each element of an array can be accessed by an identical constant amount of time (c.f. linked lists)
- useful for strings

Linked list

- sequence of nodes each containing data and pointers to other nodes
- singly linked list: each node (except last) contains a single pointer to the next element
- nodes are accessed by traversing the list: time dependent on node's location
- doesn't require preliminary reservation of memory
- efficient insertions and deletions
- header: special node at start of list, points to first item in list, could contain:
- metadata about list e.g. current length
- pointer to last element in list
- doubly linked list: each node contains a pointer to the next and previous node

Item $[0]$	Item [1]	\ldots	Item $[n-1]$

FIGURE 1.3 Array of n elements.

FIGURE 1.4 Singly linked list of n elements.

FIGURE 1.5 Doubly linked list of n elements.

List

- list: finite sequence of data items
- operations:
- search for
- insert
- delete

Stacks

- stack: list in which insertions and deletions are performed at the end (top) of the list
- last-in-first-out
- picture vertical stack of plates

Queue

- queue: elements added to rear, and removed from the front
- dequeue: elements deleted from the front
- enqueue: elements added to the rear
- first-in-first-out
- think queue of customers in line

Priority queues

- priority queue: useful for selection of an item of highest priority from dynamically changing candidates
- collection of data items from a totally ordered universe (e.g. integer/real numbers)
- operations:
- find largest element
- delete largest element
- add a new element
- heap is the most efficient solution to this problem

Graphs

- collection of points, called vertices or nodes, with some connected by edges
- a graph

$$
G=\langle V, E\rangle
$$

, is a pair of two sets

- finite nonempty set V , vertices
- set E of pairs of these items, edges
- if these pairs of vertices is unordered i.e.

$$
(u, v)
$$

is the same as

$$
(v, u)
$$

, v and u are adjacent, connected by undirected edge

$$
(u, v)
$$

- vertices u and v are endpoints of edge

$$
(u, v)
$$

- u and_v_ are incident to this edge (and vice versa)
- a graph is undirected if all edges are undirected
- directed edge

$$
(u, v)
$$

means vertices

$$
(u, v)
$$

are not the same as vertices

$$
(v, u)
$$

- from tail u to head v

- a graph is directed if all edges are directed (aka digraphs)
- convenient to label vertices with letters or numbers
- graph with 6 vertices and 7 undirected edges

```
v = \{a, b, c, d, e, f\}
\newline
E = \{(a,c), (a,d), (b,c), (b,f), (c,e), (d,e), (e,f)\}
```



```
    V = \{a, b, c, d, e, f\}
```

\newline
$E=\backslash\{(a, c),(b, c),(b, f),(c, e),(d, a),(d, e),(e, c),(e, f) \backslash\}$

Figure 1: directed_graph

- this definition allows loops, including edges connecting vertices to themselves, however unless stated will be expected to have no loops
- definition disallows multiple edges between the same vertices of an undirected graph:
- number of edges

$$
|E|
$$

- number of vertices

$$
|V|
$$

-

$$
0 \leq|E| \leq|V| \frac{(|V|-1)}{2}
$$

- graph is complete if every pair of vertices is connected by an edge
- complete graph with

$$
|V|
$$

vertices:

$$
K_{|V|}
$$

- graph with few missing edges is dense
- graph with few edges present is sparse

Graph representations

- adjacency matrix: for graph with

$$
n
$$

vertices is

$$
n \times n
$$

boolean matrix

- row i, col j: 1 if edge from i to j; 0 otherwise
- undirected graph has a symmetric adjacency matrix

$$
A_{i j}=A_{j i}
$$

for all i, j

- adjacency list: collection of linked lists for each vertex containing all adjacent vertices (those connected by an edge)
- sparse graphs more efficiently represented by adjacency list
- dense graphs more efficiently represented by adjacency matrix

(a)

(b)

Figure 2: graph_representation

Weighted graphs

- weighted graph: graph with numbers (weights, costs) assigned to edges
- adjacency matrix can be updated to a weight matrix such that

$$
A_{i j}
$$

is the weight for that edge

- if there is no such edge, entries are
∞

Paths and Cycles

- path from vertex u to vertex v of graph G: sequence of adjacent vertices from u to v.
- simple path: all vertices of a path are distinct
- path length: (num. vertices)-1, (num. edges)
- directed path: sequence of vertices, with each successive pair of vertices u, v having a directed edge (u, v)
- connected graph: for every pair of vertices u, v there is a path from u to v
- i.e. no unreachable vertices
- a disconnected graph forms multiple connected components: maximal connected subgraphs of a graph

Graph becomes disconnected when dashed line is removed

- cycle: path of positive length that starts and ends at the same vertex, without traversing the same edge more than once
- acyclic: graph without cycles

Trees

- free tree, aka tree: connected acyclic graph
- Necessary property for graph to be a tree:
* $($ number of edges $)=($ number of vertices) -1
*

$$
|E /|=|V|-1
$$

- For connected graphs this is a sufficient property; useful for checking if a connected graph has a cycle
- forest: graph with no cycles but is not necessarily connected, with each component being called a tree

(a)

(b)

FIGURE 1.10 (a) Tree. (b) Forest.

Figure 3: graph_tree_forest

Rooted trees

- for every two vertices in a tree, there exists exactly one simple path from one vertex to the other
- can select arbitrary vertex in a free tree as root of the rooted tree
- e.g. file system hierarchy

(a)

(b)

FIGURE 1.11 (a) Free tree. (b) Its transformation into a rooted tree.

Figure 4: rooted_tree

- ancestor of vertex v: all vertices on simple path from root to vertex v
- vertex usually considered its own ancestor
- proper ancestor excludes the vertex itself
- if

$$
(u, v)
$$

is the last edge of simple path from root to vertex v

- u is parent of v
- v is child of u
- sibling: vertices with same parents
- leaf: vertex with no children
- parental: vertex with at least one child
- descendants: all vertices for which v is an ancestor
- proper descendants: excludes vitself
- subtree rooted at v : all descendants of v with all edges connecting
- depth of a vertex v : length of simple path to v
- height of a tree: longest simple path from root to leaf

Ordered trees

- ordered tree: rooted tree in which all children of each vertex are ordered
- binary tree: ordered tree where each vertex has at most two children
- each child is a left child or a right child
- binary tree with root at left child of a vertex in a binary tree is the left subtree
- as subtrees are also binary trees, they are useful for recursive algorithms
- inequality for height h of a binary search tree with n nodes:

$$
\left\lfloor\log _{2} n\right\rfloor \leq h \leq n-1
$$

- binary search tree: numbers assigned to vertices, with parent vertex being larger than all elements in left subtree, and smaller than all elements in right subtree
- multiway search tree: generalisation of binary search trees
- useful for efficient access to very large datasets
- first child-next sibling representation: left subtree of vertex is child, while right subtree is siblings.
- useful for computer representation of an arbitrary ordered tree with widely varying numbers of children by converting to a binary tree

Figure 5: binary_search_tree

Sets and Dictionaries

- set: unordered collection of distinct elements
- operations:
- checking membership
- finding union
- finding intersection

Universal set

- consider large set U with n elements
- bit vector: subset S of U can be represented by bit string of size n
e.g.

$$
U=\{1,2,3,4,5,6,7,8\} S=\{2,3,7\}
$$

- bit string: 01100010
- these set representations allow very fast set operations but with high memory use

List structure

- more common approach for handling sets
- multiset/bag: circumvents uniqueness set requirement with an unordered collection of items that are not necessarily distinct
- lists are ordered, where as sets are not: largely this doesn't matter for practical purposes

Dictionary

- dictionary: data structure that implements most common set operations:
- searching for an item
- adding items
- deleting items
- many implementations, from arrays to hashing and balanced search trees

